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HIGHLIGHTS 
 Fully nonlinear numerical wave tank with a forced oscillating floater in two-layer fluids is developed 

using dual-domain boundary element method. 

 Free surface and internal waves are analyzed in terms of two wave modes(barotropic and baroclinic 

modes), and linear and fully nonlinear computational results are also compared.  

 

1 INTRODUCTION  
Observations of internal waves at the interface of two fluids of different densities have been continuously 

reported and several studies on internal-wave generation and propagation for various stratified fluids have 

also been published. In a two-layer fluid system, most studies have been for internal solitary waves(ISWs) 

and they investigated the generated and propagated ISWs using the gravity-collapse approach[1-5]. In 

addition, there was a numerical study on a fully nonlinear interaction between ISWs and free surface using 

a multi-domain boundary element method(MDBEM)[6] and another numerical study on ISW generation 

using a coupled mass source(CMS) method[7]. There have also been several experimental studies on the 

generation and propagation of internal periodical waves(IPWs)[8,9]. There were several numerical studies 

on IPWs based mostly on linear theory [7,10].  

In this study, free surface and internal periodical waves generated by a heaving floater are analyzed using 

two-dimensional fully nonlinear numerical wave tank(FN-NWT) technique based on dual-domain 

boundary element method(BEM). The free surface and internal boundaries are modeled by mixed Eulerian-

Lagrangian(MEL) method and full Lagrangian(Material-node) approach, and the elements on these 

boundaries are updated at each time step. The two-layer fluid system has two different wave modes called 

barotropic and baroclinic modes. The two wave modes are systematically compared between linear and  

fully nonlinear NWTs and the wave elevation snapshots and respective-order wave components are 

extracted by Fast Fourier Transform(FFT).  

 

2 MATHEMATICAL FORMULATIONS  
Each fluid domain is assumed to be a potential flow. So, Laplace equation for a velocity potential(ϕ) can 

be used as the governing equation of each fluid domain as follow Eq. (1). This equation is transformed to 

boundary integral equation(Eq. 2) by using Green’s 2nd identity. 
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where Ω(m) means each domain and m=1, 2 correspond upper and lower domains, respectively; α is the solid 

angle and it has 0.5 on the boundary; Green’s function is defined as 1
12
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= −  and R1 is the distance 



between source and field points. To generate waves, a body boundary condition can be defined using a 

body velocity. 
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in which, V(=Yωcos(ωt), Y is a forced oscillation amplitude) is a floater velocity. Eqs. (4) and (5) are 

nonlinear dynamic and kinematic free surface boundary conditions. To represent the movement of free 

surface boundary, the mixed Eulerian-Lagrangian(MEL) method is used. The free surface nodes are 

rearranged using total derivative( 1t t
v





= +  ), and the free surface node velocity is assumed to be equal 

to the fluid particle velocity( (1)

1v =  ) for material node approach(Full Lagrangian approach). 
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where g is a gravity acceleration and η1 is a free surface elevation. Nonlinear interface boundary conditions 

are defined as follow Eq. (6), (7). As with the free surface boundary conditions, interface nodes are 

rearranged using total derivative( 2t t
v





= +  ), and the interface node velocity is assumed to be equal to 

the particle velocity on the interface( (2)

2v =  ). 
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Finally, a rigid and impervious boundary condition is applied on the side wall and bottom boundaries as 

follow equation. 
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3 RESULTS AND DISCUSSION 
In this study, numerical calculation is conducted under follow conditions: density ratio(γ=0.5), forced 

oscillation amplitude(Y=0.05m), water depth(h1=0.15m, h2=0.25m), body draft(d=0.08m) and body 

width(B=0.2m) as shown in Fig. 1. The dispersion relationship[11] of propagating waves in two-layer fluids 

can be expressed as follow equation. Based on this equation, wave numbers according to oscillating 

frequencies are shown in Table 1.  
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in which γ is density ratio of upper and lower fluid domain(=ρ1/ρ2); th1=tanh(kh1); th2=tanh(kh2); k is wave 

number(=2π/λ). Positive(+) and negative(-) signs in RHS in Eq.(9) correspond to barotropic and baroclinic 

modes, respectively. Therefore, there are two different wave numbers(k1: Barotropic and k2: Baroclinic 



mode) according to one frequency(ω). In general, free surface wave is predominant in barotropic mode and 

internal wave is predominant in baroclinic mode. Detailed characteristics of each wave mode were 

presented in [10, 11]. 

 

Figure 1: Sketch of two-layer fluids system with an oscillating body 

Table 2: Wave number in two-layer fluids system at each wave mode 

 KB/2 ω[rad/s] k1(ω)[rad/m] k2(ω)[rad/m] k1(2ω)[rad/m] k2(2ω)[rad/m] 

Case I 0.1 3.13 1.803 4.665 4.383 12.431 

Case II 0.3 5.43 3.547 9.768 12.009 36.019 

In Fig. 2, snapshots of free surface and internal wave elevations are compared for linear and fully nonlinear 

calculation. When the oscillation frequency is low, there is the difference in internal waves between linear 

and fully nonlinear calculations (in Fig. 2(a)). However, when the oscillation frequency increases, the 

nonlinearity of free surface waves becomes predominant (in Fig. 2(b)).  

       
(a) Case I (KB/2=0.1)                                                   (b) Case II (KB/2=0.3) 

Figure 2: Snapshots of free surface and internal wave elevation 

Also, using these snapshots, wave amplitudes(A1:Surface wave, A2:Internal wave) corresponding to each 

wave number are extracted by Fast Fourier Transform(FFT) technique in Fig. 3 to 4. In the linear calculation, 

only primary frequency components in each wave mode(k1(ω), k2(ω)) are extracted, but in the fully 

nonlinear calculation, higher order frequency components of each wave mode are also detected. 

 
(a) Linear calculation results 

 
(b) Fully nonlinear calculation results 

Figure 3: Fast Fourier Transform(FFT) results of wave amplitudes corresponding to wave numbers(k) [KB/2=0.1] 



 
(a) Linear calculation results 

 
(b) Fully nonlinear calculation results 

Figure 4: Fast Fourier Transform(FFT) results of wave amplitudes corresponding to wave numbers(k) [KB/2=0.3] 

In the low frequency(KB/2=0.1), FFT results of fully nonlinear calculation can extract the wave number 

component corresponding to 2nd order frequency(k2(2ω)) in baroclinic mode not only internal wave but also 

surface wave (in Fig. 3(b)). On the other hand, in case of KB/2=0.3, the wave number component 

corresponding to 2nd order frequency(k1(2ω)) in barotropic mode is detected from surface and internal 

waves (in Fig. 4(b)). Also, the baroclinic mode effect(k2) on free surface waves decreases when the 

oscillation frequency increases. 

 

4 CONCLUSIONS 
In this study, fully nonlinear interaction between free surface and internal waves was studied by using FN-

NWT in two-layer fluids. The FN-NWT was modeled by dual-domain BEM, and the free-surface and 

interface boundaries were rearranged by MEL method with Full Lagrangian approach. The waves were 

decomposed into respective-order wave frequency components by using FFT technique. Higher-order 

frequency components can be detected in not only barotropic mode but also baroclinic mode as nonlinearity 

increases in the fully nonlinear system. When the oscillation frequency was low, the nonlinearity in the 

baroclinic mode became stronger, and as the frequency increased, the nonlinearity in the barotropic mode 

became dominant. 
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