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Abstract
At the 18th IWWWFB, Malenica & Korobkin [1] presented water wave scattering by a
cylinder in partially frozen sea. In the present study, their work is generalised to the wave
interactions with a circular cylinder surrounded by a floating ring-shaped poroelastic plate.
Despite the analogy to [1] in mathematical aspects, here the physical focus is placed on the
shielding effects due to the floating poroelastic ring-shaped plate on the cylinder.

Boundary value problem
Consider a rigid vertical cylinder of a radius R standing through the water depth h sur-
rounded coaxially by a ring-shaped poroelastic plate, with the inner and outer radii a and
b, lying on the free surface under water wave actions. It is assumed that the fluid is incom-
pressible and inviscid, and the flow is irrotational so that a velocity potential is existent.
Three-dimensional Cartesian and cylindrical coordinate systems are defined with the z = 0
plane on the undisturbed free surface and Oz axis coinciding with the cylinder’s axis and ori-
enting positively upward, as in Fig. 1. The horizontal coordinates are (x, y) = r(cos θ, sin θ).

In a time-harmonic steady state, a time oscillator e−iωt can be extracted and suppressed
here, where ω denotes the angular frequency of oscillation. The complex velocity potential
φ is subjected to the following boundary value problem

∇2φ = 0 in the fluid domain (1)

−Kφ+ φz = 0 on z = 0 and r ∈ [R, a] ∪ [b,∞) (2)

(χ∇̄4 −Kγ + 1)

(
∂

∂z
− iσ

)
φ−Kφ = 0 on z = 0 and r ∈ [a, b] (3)

φz = 0 on z = −h (4)

φr = 0 on r = R (5)

lim
r→∞

√
r

(
∂

∂r
− ik0

)
(φ− φI) = 0 when r →∞ (6)

where K ≡ ω2/g denotes the wavenumber in deep water, k0 is the wavenumber in finite water
depth satisfying the gravity wave dispersion relation k tanh(kh) = K, g is the acceleration
of gravity, ∇̄ is the gradient with respect to horizontal coordinates, σ = k0b/2π with b a
nondimensional parameter associated with solidity ratio, and χ and γ are defined as χ =
D/(ρg) and γ = mu/ρ, respectively, with mu denoting the mass of unit area of the plate, D
the flexural rigidity of the plate and ρ is the density of water. In Eq. (6) φI is the incident
wave potential written as [2]

φI = − igA

ω

cosh[k0(z + h)]

cosh(k0h)
eik0x = − igA

ω

cosh[k0(z + h)]

cosh(k0h)

∞∑
m=0

εmimJm(k0r) cosmθ, (7)



where εm equals to 1 when m = 0 and 2 otherwise, A is the wave amplitude, and Jm(·)
means the mth-order Bessel function of the first kind.
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Figure 1: Schematic of wave interactions with a cylinder surrounded by a ring-shaped plate.

At the edges of the annular ring, the edge conditions free of shear force and bending
moment are imposed[

∇̄2 − 1− ν
r

(
∂

∂r
+

1

r

∂2

∂θ2

)]
w = 0 at r = a and r = b, (8a)

[
∂

∂r
∇̄2 − 1− ν

r2

(
− ∂

∂r
+

1

r

)
∂2

∂θ2

]
w = 0 at r = a and r = b (8b)

where w denotes the hydroelastic deflection which can be obtained based on the kinematic
condition on the plate

w =

(
i

ω

∂φ

∂z
+
σ

ω
φ

)
z=0

(9)

Eigenfunction expansion method
The boundary value problem is solved by an eigenfunction expansion method. The fluid
domain is divided by two cylindrical surfaces of radii r = a and r = b into three subdomains,
as illustrated in Fig. 1. The velocity potentials in each subdomain are expressed as

φi = − igA

ω

∞∑
m=0

∞∑
n=0

εmZn(z)Amn

[
Jm(knr)−

J ′m(knR)

H ′m(knR)
Hm(knr)

]
cosmθ, (10)

φii = − igA

ω

∞∑
m=0

∞∑
n=−2

εmZn(z)[BmnJm(µnr) + CmnYm(µnr)] cosmθ, (11)

φiii = − igA

ω

∞∑
m=0

εm

[
imZ0(z)Jm(k0r) +

∞∑
n=0

DmnZn(z)Hm(knr)

]
cosmθ, (12)

where superscripts ‘i’, ‘ii’, and ‘iii’ correspond to three subdomains. Amn, Bmn, Cmn, and
Dmn are coefficients to be determined, Hm(·) = Jm(·) + iYm(·) is the mth-order Hankel



function of the first kind, and vertical mode functions Zn(z) and Zn(z) for gravity waves
and flexural-gravity waves are expressed as

Zn(z) =
cosh[kn(z + h)]

cosh(knh)
with n ≥ 0, and Zn(z) =

cosh[µn(z + h)]

cosh(µnh)
with n ≥ −2. (13)

In Eq. (13), kn are roots of the gravity wave dispersion relation k tanh(kh) = K, and µn are
roots of the flexural-gravity wave dispersion relation K = (1−Kγ + χµ4)[µ tanh(µh)− iσ]
[3]. From Eq. (11), the hydroelastic deflection of the ring-shaped plate is written as

w =
A

K

∞∑
m=0

∞∑
n=−2

εmSn[CmnJm(µnr) +DmnYm(µnr)] cosmθ, with Sn = µn tanh(µnh)− iσ.

(14)
To setup an equation system, the matching conditions, requiring the continuity in po-

tential and its radial derivative at juncture boundaries r = a and r = b, are imposed in
a Galerkin manner via integrating a test function Zl(z)e−ikθ, with k ≥ 0 and l ≥ 0, over
z ∈ [−h, 0] ∪ θ ∈ [−π, π]. To obtain a determined system, the free edge conditions (8a)
and (8b) for the flexible ring at r = a and r = b are supplemented. For the sake of limited
spaced, detailed equations are not presented here.

Results and discussions
As illustrative examples, we consider a setup R/h = 0.5, a/h = 1.0, and b/h = 2.0. The
mass density of the floating plate is γ/h = 0.1.

Figure 2 depicts the wave exciting force and mean drift force, which are nondimension-
alised with respect to πρgR2A and ρgA2R, respectively, as a function of wavenumber k0h for
different parameters of flexural rigidity χ̄ = χ/h4. Both impervious b = 0.0 and perforated
b = 5.0 ring plates are considered. Comparison is made with the results determined by the
MacCamy-Fuchs formula for an isolated cylinder. For impervious plate b = 0, the linear
wave exciting force is much greater than that by an isolated cylinder near k0h = 3.0 and
k0h = 7.7, indicating the resonance of waves near the cylinder may occur. Moreover, the
mean drift force experiences oscillations near k0h = 3.0, and becomes spiky when k0h > 7.0.
When the ring-shaped plate is perforated b = 5.0, however, both linear wave exciting force
and mean drift force are significantly lower than that experienced by an isolated cylinder.
At relatively high frequencies k0h > 4.0, the reduction of the linear wave exciting force due
to the shielding effects can be 90%, whereas that of the mean drift force can be up to 99%.
Moreover, in contrast to the impervious scenario, there is no resonance of waves observed
when the plate is perforated. The reason is that energy will be dissipated when there is flow
past a perforated plate. Therefore, the deployment of a poroelastic ring-shaped plate can
help to reduce both linear wave exciting force and mean drift force.

To delve into the resonance of waves, the coloured contour plots of the free surface
elevation and hydroelastic deflection at χ̄ = 1.0 are exhibited in Fig. 3 for two resonant
frequencies k0h = 2.92 and k0h = 7.76 in the left and right subplots. The real and imaginary
parts are displayed on the upper and lower panels, respectively. White circles correspond to
the edges of the ring-shaped plate. In both cases, the amplitude of free surface waves in the
annular region between the cylinder and inner ring edge is very large, and the amplification
can be up to 3.3 and 5.6. In the lower panels, wave trough and wave crest appear at the
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Figure 2: Wave exciting force and mean drift force on the cylinder for different parameters
of χ̄ and b. Comparison is made with the MacCamy-Fuchs formula for an isolated cylinder.

front part and rear part of the cylinder, resulting in large wave force. At the workshop, more
details and results will be presented.
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Figure 3: Free surface elevation and hydroelastic deflection for k0h = 2.92 (left) and k0h =
7.76 (right) at χ̄ = 1.0. The real and imaginary parts are exhibited on the upper and lower
panels, respectively.
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