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Abstract
At the 37th IWWWFB, Liang, et al. [1] presented the numerical simulation of the ship
wake as well as its time-frequency spectrograms. As a sequel to [1], this study considers
the fundamental physical properties of the ship wake at a fixed location. The insight into
the physics of the ship wake leads to the development of a method requiring two-probe
measurements to determine the speed and sailing direction of a ship.

Physical properties
Consider a ship steadily advancing in calm water. We define two coordinate systems: one is
the space-fixed coordinate system OXY Z with the OX axis pointing to ship’s bow and OZ
axis pointing positively upward, and the other one is the coordinate system oxyz moving
with the ship along OX axis. At t = 0, two frames of reference coincide.

By using the coordinate transform X = x+Ut, the free surface elevations for transverse
and divergent waves in the fixed coordinate system OXY Z are written in the form of

πE±(X, Y, t) = κ∥FKH
± ∥ cos[P±(X, Y, t)], (1)

where κ = g/U2, and the phase functions P±(X, Y, t) are

P±(X, Y, t) = κ
√

1 + q2±(X − Ut+ q±Y )∓ π/4 + Arg(FKH
± ), (2)

where F FH
± are defined in [1], with subscripts − and + corresponding to transverse and

divergent waves, respectively, and q± are stationary phase points. Suppose that the censor
location is at (X, Y ) = (0, Ys) in the fixed coordinate system, and the coordinates in the
moving frame of reference are (x, y) = (−Ut, Ys). Then we can define a nondimensional time

τ ≡ Ut/Ys = −x/y, and q± = (τ ±
√
τ 2 − 8)/4. (3)

According to the geometrical relation tan γc = 1/
√
8, where γc is the Kelvin angle, the

observation point locates inside the Kelvin wake when τ >
√
8, and the cusp line of the

Kelvin wake meets the censor at τ =
√
8. Based on the phase function (2), we obtain the

frequencies of transverse waves ω− and divergent waves ω+ measured at the censor location

Uω±/g =
√

1 + q2± =

√
2

4

√
τ 2 + 4± τ

√
τ 2 − 8. (4)

The long time asymptotic expressions for frequencies are

ω− = g/U +O(τ−2), and ω+ = gτ/(2U) +O(τ−3) = gt/(2Ys) +O(τ−3). (5)

Figure 1 depicts normalised frequencies of transverse and divergent waves at a censor lo-
cation as a function of nondimensional time τ determined by Eq. (4). At τ =

√
8, frequencies



of transverse and divergent waves are identical, and equal to ωU/g =
√
3/2. With the time

marching, the frequency of transverse waves becomes nearly constant, whereas that of diver-
gent waves keeps increasing. When τ is large, as in Eq. (5), we have ω− = g/U , indicating
that the frequency of transverse waves is independent of time t, and inversely proportional
to ship’s speed U . For divergent waves, however, the frequency is ω+ = gt/(2Ys), linearly
proportional to the time t but independent of ship’s speed U .
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Figure 1: Normalised frequencies of transverse and divergent waves versus τ .

According to the phase function (2), wavenumbers in X- and Y -directions are obtained

kX
± = κ

√
1 + q2±, and kY

± = κq±

√
1 + q2±. (6)

Furthermore, we can rewrite the frequencies (4) as

ω± =
√

gk± with k± =
√
(kX

± )2 + (kY
±)

2 (7)

called the wavenumber modulus. Equation (7) indicates that both transverses and divergent
waves satisfy the deep water dispersion relation ω2 = gk [2].

According to Eq. (6), the heading angles of transverse and divergent waves are determined

β± = arctan(kY
±/k

X
± ) = arctan

(
τ ±

√
τ 2 − 8

4

)
. (8)

Given the dispersion relation (7), i.e. the relationship between frequency and wavenum-
bers, the phase velocity vector is obtained

c± =
ω±

∥k±∥2
(kX

± , kY
±)

k±
=

U

1 + q2±
(1, q±) =

8U

τ 2 + 4± τ
√
τ 2 − 8

(
1,

τ ±
√
τ 2 − 8

4

)
, (9)

and the group velocity vector according to [3] is written as

v± =

(
∂ω±

∂kX
±
,
∂ω±

∂kY
±

)
=

U

2(1 + q2±)
(1, q±) ≡

c±
2
. (10)



Consistent with the deep water wave theory, Eqs. (9) and (10) indicate that, in the fixed
coordinate system, the phase velocity of both transverse and divergent waves is in alignment
with the group velocity, and is twice the group velocity in magnitude.

Ship wake detection
Given the physical properties, we aim at developing a two-probe method to determine the
speed and direction of the sailing ship. As in Fig. 2, there are two probes A and B at a
distance λ, and we can plot a deployment line going through A and B. Suppose that the
angle between the ship’s sailing line and deployment line is θ, which is to be determined. We
define tA and tB as the time instants when the cusp meets probes A and B, respectively, and
their difference is tB − tA = T . At tA and tB, the mid-ship locates at P and Q, respectively.
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Figure 2: Sketch of a two-probe method to determine ship’s speed and sailing direction.

By applying the short-time Fourier transform, the components of different frequencies
can be separated, and one can obtain an amplitude heat map. Therefore, it is feasible to
obtain the time difference T as well as the time-dependent wave frequencies ωA

± and ωB
±

measured at A and B by processing the time series. Then, the task is to determine ship’s
speed U and sailing angle with respect to the deployment line θ.

Based on Eq. (5), the ship’s speed can be obtained in a straightforward manner

U = g/ωA,B
− when transverse waves are in a steady state, (11)

because the frequency of transverse waves is nearly independent of time. According to the
geometrical relation, the angle between the deployment line and sailing line θ is

θ = arcsin[UT/(3λ)]− γc. (12)

To showcase the two-probe method, we devise a problem with a ship sailing at a speed
U = 1.6 m/s. Two wave probes A and B are at a distance λ = 2 m, and the sailing direction
with respect to the deployment line is θ = 30◦.

Figure 3 exhibits the time histories and the corresponding time-frequency spectrograms
obtained from the measurements at probes A (left) and B (right), respectively. By measuring



the frequency of the lower branch of heat map, the frequency of transverse waves is ω− ≈
6.1 rad/s, and thus the corresponding velocity determined by Eq. (11) is Ucal ≈ 1.61 m/s,
which is close to the true value 1.6 m/s.

Based on Eq. (5), the frequency for divergent waves is linearly increasing with time at
a slope S = g/(2Ys). The measurement of the slope of the upper branch associated with
divergent waves gives SA = g/(2Y A

s ) ≈ 1.6 and SB = g/(2Y B
s ) ≈ 1.2, and then the lateral

distances from the sailing line Y A
s and Y B

s can be obtained. Suppose that the cusp line meets
the probes A and B at time instants tA and tB, respectively. Then, we have

U(tA − t0)/Y
A
s = 2

√
2 = [U(tB − t0)− λ cos θ]/Y B

s . (13)

Combining with Eq. (12), we obtain an equation with respect to θ

θ = arcsin

[
2
√
2(Y B

s − Y A
s ) + λ cos θ

3λ

]
− γc. (14)

As a result, the computed sailing angle is θcal ≈ 30.7◦, which is in good agreement with
the true value θtrue = 30◦. Therefore, the two-probe method developed here can be used to
estimate the ship’s speed and sailing angle via measuring the time-frequency spectrograms.
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Figure 3: Free surface elevations (top), and the corresponding time-frequency spectrograms
(bottom). The measurements at A and B are displayed in the left and right, respectively.
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