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Considering the two-dimensional sloshing problem, we construct domains with ‘high spots’ (that
is, points, where the free surface elevation is extremal for the fundamental eigenmode) located inside
the surface’s rest position. The notion of a high spot was introduced in [1], where a characterization
of 2D domains without interior high spots was also given.

1 Statement of the problem

Let an inviscid, incompressible, heavy fluid occupy an infinite canal of uniform cross-section
bounded above by a free surface of finite width. The surface tension is neglected and the fluid
motion is assumed to be irrotational and of small-amplitude. The latter assumption allows us to
linearize boundary conditions on the free surface which leads to the following problem in the case
of the two-dimensional motion in planes normal to the generators of the canal bottom. Taking
Cartesian coordinates (x, y) in the plane of motion so that the x-axis lies in the mean free sur-
face, whereas the y-axis is directed upwards, and removing a time-harmonic factor, the following
boundary value problem arises for the real-valued velocity potential u(x, y):

uxx + uyy = 0 in W, uy = νu on F, ∂u/∂n = 0 on B. (1)

Here the canal’s cross-section W is a bounded simply connected domain, whose piecewise smooth
boundary ∂W has no cusps. One of the open arcs forming ∂W is an interval F of the x-axis (the
free surface of fluid at rest), and the bottom B = ∂W \ F is the union of open arcs, lying in the
half-plane y < 0, complemented by corner points (if there are any) connecting these arcs. The
orthogonality condition ∫

F
udx = 0 (2)

is supposed to hold, thus excluding ν = 0, which is an eigenvalue of (1), and so the spectral
parameter ν is equal to ω2/g, where ω is the radian frequency of the fluid oscillations and g is the
acceleration due to gravity. Properties of eigenvalues and eigenfunctions of (1), (2) are well known;
see a summary in [2].

Nodal domains and their properties. Let N(u) = {(x, y) ∈ W : u(x, y) = 0} be the set
of nodal lines of a sloshing eigenfunction u. A connected component of W \ N is called a nodal
domain. It follows from the first and the last conditions (1) that each nodal domain has a piecewise
smooth boundary without cusps. Their properties are closely related to our considerations, and so
we provide a summary of assertions proved in [2]:

(i) If R is a nodal domain, then R ∩ F is the union of a finite number of closed subintervals of F
(possibly a single interval); the eigenfunction un cannot change sign more than 2n times on F .
(ii) The number of nodal domains corresponding to the nth eigenfunction un is less than or equal
to n+ 1.

Combining these properties and condition (2), one concludes that a fundamental sloshing eigen-
function u has a single nodal line which divides W into two nodal domains; this line has one or
both ends on F .



2 Construction of domains with interior high spots (rigorous results)

We apply the semi-inverse method in which a prescribed eigenmode u satisfies the first two con-
ditions (1) at the outset, whereas the last condition and the requirement that u is a fundamental
eigenfunction are used for determining the shape of domain’s bottom.

Let us consider the particular pair velocity potential/stream function, namely:

u(x, y) =

∫ ∞
0

cos k(x−π) + cos k(x+π)

k − ν
eky dk , υ(x, y) =

∫ ∞
0

sin k(x−π) + sin k(x+π)

ν − k
eky dk .

(3)
Following [3, Subsect. 4.1.1], we put ν = 3/2 in which case both numerators vanish at k = ν = 3/2.
Hence the integrands have no singularities, and we have two usual converging infinite integrals.

It is easy to verify that u and υ are conjugate harmonic functions in IR2
− such that

u(−x, y) = u(x, y) and υ(−x, y) = −υ(x, y).

Moreover, u and υ are infinitely smooth up to ∂IR2
− with {x = ±π, y = 0} excluded, whereas

[uy − νu]y=0 is equal to a linear combination of Dirac’s measures at x = π and x = −π. Therefore,

uy = νu on ∂IR2
− \ {x = ±π, y = 0}. (4)

The calculated nodal lines of u and υ are shown in Fig. 1 (b); the line plotted in solid has the
following properties; see [2, Prop. 2.1] for the proof.

Proposition 1. If ν = 3/2 in (3), then along with {x = 0, y < 0}, there is a single nodal line of
υ(x, y) in IR2

−, which is smooth, symmetric about the y-axis and having both ends on the x-axis.
The right one, say (x0, 0), lies between the origin and (π, 0).

Thus, the nodal line of υ with both ends on the x-axis defines the bottom B3/2 of a fluid
domain (in Fig. 1 (b), it is denoted W3/2), because the Cauchy–Riemann equations yield that the
last condition in (1) is fulfilled on this line for u given by (3). On the free surface F3/2 of this
domain, the second condition (1) holds in view of (4), and so u satisfies the sloshing problem with
ν = 3/2 in W3/2.

Furthermore, property (ii) of nodal domains implies that u is the fundamental eigenfunction
corresponding to ν = 3/2. Indeed, u has only one nodal line in W3/2 (see the dashed line in
Fig. 1 (b) plotted within W3/2), which was proved in [2, Th. 2.6]; namely, we have the following
assertion.

Theorem 1. In the domain W3/2, the sloshing eigenfunction u given by (3) with ν = 3/2 has a
single nodal line with endpoints (±xn, 0), where xn ∈ (0, x0) is the only minimum point of υ(x, 0)
on {x > 0}.

Since u(±xn, 0) = 0, this function has an extremum between −xn and xn, attained at x = 0 in
view of symmetry. Thus, we arrived at the following.

Corollary 1. In the fluid domain W3/2, there is an interior high spot of the fundamental sloshing
eigenfunction u given by (3) with ν = 3/2; it is located at the origin.

The representation of u(x, 0) valid on [0, π) (see [2, Form. (2.9)]) implies that ux(0, 0) = 0 and
uxx(0, 0) < 0. Hence u(x, 0) attains maximum at the high spot x = 0.

There are two other interior high spots on F3/2, which correspond to minima of u(x, 0). Each of
them is close to the corresponding endpoint of the free surface F3/2. Their existence follows from
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Figure 1: Plotted for ν = 3/2: (a) the
traces u(x, 0) (dashed line) and υ(x, 0)
(solid line); (b) the nodal lines of u
(dashed lines) and υ (solid line) given
by (3). High spots on F3/2 are marked
by the arrows connecting them with the
extrema of the velocity potential trace.
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Figure 2: Plotted for ν = 7/2: (a) the
traces u(x, 0) (dashed line) and υ(x, 0)
(solid line) given by (3); (b) the nodal
lines of u (dashed lines), and the level
lines υ ≈ −0.023145 (solid and dotted
lines). Interior high spots on F7/2 are
marked by arrows connecting them with
extrema of the velocity potential trace.

the representation of υ(x, y) (see [2, Form. (2.7)]), implying that υy(x0, 0) = ux(x0, 0) = 2x0
π2−x20

> 0,

and so ux(xh, 0) = 0 at some xh < x0. Hence, an interior high spot is located at (xh, 0) on the left
of the endpoint (x0, 0). By symmetry, (−xh, 0) is also an interior high spot located on the right of
the endpoint (−x0, 0).

Computations give that xh ≈ 2.077836, whereas the endpoint of the free surface F3/2 is at
(x0, 0) with x0 ≈ 2.132704, that is, the distance from the high spot to the endpoint is approximately
0.054868, which is less than 3 % of of the distance from the origin to the endpoint of F3/2.

Since the negative y-axis is the nodal line of υ with ν = 3/2, the half-domain on the right (left)
of this axis provides an example of domain with a single interior high spot.

There is another property which is quite evident for the geometry of W3/2 shown in Fig. 1 (b).

Definition 1. A fluid domain W satisfies John’s condition if it is confined to the strip bounded
by the straight vertical lines through the endpoints of the free surface F . Domains violating this
condition are called bulbous.

Proposition 2. The domain W3/2 is bulbous.

This follows by demonstrating that y′(x0) < 0 for the implicit function x 7→ y defined by the
equation υ(x, y) = 0 in a neighbourhood of (x0, 0) — the right endpoint of B3/2.

Rigorous considerations, analogous to those above, are applicable when u and υ are given by
(3) with ν = 5/2.



3 Further examples of domains with interior high spots (numerical results)

Here we present another domain with interior high spots obtained numerically by virtue of the
following procedure. For a specified ν, an appropriate nonzero level line of υ is chosen to define
the bottom. The criterion for choosing the required level is that the corresponding line has two
branches crossing transversally at a stagnation point; one of these branches (or both) serves as the
bottom.

For ν = 7/2 the stagnation point of v occurs at the level approximately equal to −0.023145; it
is the point of intersection of the solid and dotted lines in Fig. 2 (b). The solid line encloses the
domain W7/2 divided into two nodal domains by the dashed line (a nodal line of u), and so u is the
fundamental eigenfunction corresponding to ν = 7/2 in W7/2.

There are two interior high spots on F7/2: near its middle at x ≈ 1.795807, and close to the
right endpoint of F7/2 at x ≈ 2.685549, within approximately 0.026076 from the endpoint.

Furthermore, u given by (3) with ν = 7/2 is the fundamental eigenfunction corresponding to
this ν in another domain, say W ′7/2 ⊂ W7/2, which is confined between the solid and dotted lines

to the right of the latter one; see Fig. 2 (b). Indeed, v ≈ −0.023145 on both these lines, and
there are two nodal domains in W ′7/2 separated by the dashed line. There are two interior high

spots on F ′7/2 ⊂ F7/2, and both of them are close to the endpoints of F ′7/2, the left of which is at

x ≈ 1.789875, and so the high spot located near the middle of F7/2 is inside of F ′7/2. Moreover,

W ′7/2 is bulbous on both sides which distinguishes it from W7/2; see Fig. 2 (b).

Also, the same u is the fundamental eigenfunction corresponding to ν = 7/2 in the domain
W7/2 \W ′7/2, on the left of the dotted line in Fig. 2 (b). This domain satisfies John’s condition and
has no interior high spots on its free surface.

In conclusion, we notice that similar nodal domains with interior high spots are found for
ν = 2, 3 provided u and υ are analogous to (3) but having opposite parity with respect to x.

4 Concluding remarks

Here are some characteristic features of the found domains with interior high spots: (I) many of
these domains, but not all, have multiple interior high spots; (II) every such domain has at least one
interior high spot located close to an endpoint of the free surface; (III) these domains are bulbous
on the side, where an interior high spot is located close to an endpoint of the free surface; (IV) in
domains with a single interior high spot, the nodal line of the velocity potential connects the free
surface and the bottom; (V) in domains with multiple interior high spots, both types of potential
nodal lines are possible: connecting the free surface and the bottom and connecting two different
points on the free surface.

Troughs. It is clear that a sloshing domain W ⊂ IR2
− defines a trough W × (0, `) ⊂ IR3

− of any
length ` > 0. Moreover, if u(x, y) is a fundamental eigenmode of sloshing in W , then this function
plays the same role for W ×(0, `). Therefore, if W has an interior high spot, then there is a straight
line (parallel to trough’s generators) in the free surface F × (0, `), each point of which is a high
spot interior with respect to this free surface.
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