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1 INTRODUCTION

Moving ships require accurate head wave prediction to avoid direct impact and capsizing by encounter
water waves (Susaki et al., 2017). Short-term prediction can reliably predict encounter water waves
at a particular location over approximately 30s to 1min (Halliday et al., 2005). Recently, an analyt-
ical solution of the impulse response function for finite-depth water waves at static points has been
derived where the non-causal effect diminishes exponentially with distance (Iida and Minoura, 2022).
According to this, a numerical prediction method on moving points has been explored by inverse
discrete Fourier transform (Kaiser and Iida, 2022). In this paper, we propose an analytical solution to
predict encounter waves on moving points by the impulse response function based on the finite-depth
dispersion relation of water waves. We have performed both numerical and experimental comparisons
to validate the proposed method.

2 ANALYTICAL SOLUTION

A two-dimensional deterministic wave prediction problem with horizontal and vertical planes, as illus-
trated in Fig.1, is considered. The constant depth d and the gravitational acceleration g are used to
normalize the variables; non-dimensionalizations are utilized regarding d for spatial variables,

√
d/g

for time variables, and α = V/
√
gd is the Froude number. Waves propagate to the positive x-direction.

The origin O is moving backward with a constant speed V . Since both points A and B are moving at
the same forward speed V , the distance x between them remains constant. The free surface elevation
ξB(t) at point B is predicted using a convolution integral of the wave elevation ξA(t) at point A and
the impulse response function h(t), as

ξB(t) =

∫ ∞

−∞
h(τ)ξA(t− τ)dτ (1)

Fig. 1 Schematic view of two-dimensional water wave prediction problem. The distance
between A and B is x, and the free surface displacement at point B is predicted
from the time history of the displacement at point A.



The integral range for the causal impulse response function h(t) is [0,∞], indicating that the present
and past inputs determine the current outputs. The model is based on a linear time-invariant (LTI)
system by assuming linear potential theory with small amplitude. The impulse response function
is defined as h(t) = (1/2π)

∫∞
−∞ ei(ωet−kx)dωe where ωe is an encounter frequency and k is a wave

number. Considering the head wave condition into account, the normalized relation between encounter
frequency and incident wave frequency is represented as ωe = ω+αω|ω|. The incident wave frequency
ω is associated with the finite-depth dispersion relation ω|ω| = k tanh k, and the phase function is
ϕ = (ω + αω|ω|)t− kx. Due to the characteristics of the phase function, it is difficult to formulate a
single analytical solution of the impulse response function for the whole time domain. Therefore, we
propose a solution with three forms with respect to time which leads to the final outcome as

h(t) =



hS(t) = C1
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{
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πβ

}
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{
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(t ≤ t1)
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(t1 < t ≤ t2)
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(2)
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Here, Ai[·] and Gi[·] are the Airy function and the Scorer’s function, while Ai′[·] and Gi′[·] represent
their corresponding first derivative. The three forms of impulse response function hS(t), hM (t), and
hL(t) are for the small, middle, and large time domains, respectively. They are plotted in Fig.2 (a) on
their valid domains as well as on other domains. The Maclaurin series expansion, the shallow water
assumption, and the stationary phase method are employed to obtain these three domain solutions.
In the stationary phase method, cgs is the group velocity, ωs is the natural frequency, and ks is the
stationary wave number. From Fig.2 (a), it can be observed that the proposed theory is valid until
when hL(t1) > hM (t1). Otherwise, the middle solution will not exist. This is the limiting range of
this proposed method. The comparison between the analytical solution (2) and the numerical solution
obtained by IDFT for the whole time domain is shown in Fig.2 (b). It has been seen that the analytical
and numerical solutions show good agreement with each other. However, a little discrepancy exists
beyond tcut, which is the cut-off frequency. Because after the tcut, the analytical solution is regarded



Fig. 2 Results are shown in the case of x = 1.289 and α = 0.134. (a) Analytical solutions
on small, middle, and large domains are plotted not only on their valid domains
but also on other domains. (b) Comparison between the analytical solution of
impulse response function and numerical solution by IDFT for the whole time
domain.

as zero, while some residual value still exists in the numerical solution due to the involvement of
the Gibbs phenomenon. Details of calculation processes and discussions about the limiting range are
presented in the workshop.

3 PREDICTION OF IRREGULAR WAVES

A towing tank experiment was carried out to validate the proposed theories. The experiment was
conducted in the towing tank at Osaka University, Japan. The length of the towing tank is 100
[m], and the width is 7.8 [m]. The tank is filled with pure water until the water level is 4.288
[m]. The distance between point A and B is 5.530 [m]. Therefore, the non-dimensional distance
is x = 5.530/4.288 = 1.289. The sampling time was set as ∆t = 0.01 [s]. The irregular wave’s
significant wave height was set to H1/3 = 0.04 [m], and the mean wave period was set to T01 = 1.2
[s]. The experiment was conducted at three different speeds 0.873, 1.061, and 1.238 [m/s]. After
about 150 [s], the waves approached the carriage. Following that, the train began to move, and the
carriage traversed approximately 70 [m] of distance. From Fig.3 (a), it can be observed that there is
considerable agreement between predicted outputs by the analytical solution and experimental results.



Fig. 3 (a) Prediction of irregular waves by the analytical solution of impulse response
function at point B and comparison with experimental values, where x = 1.289
and α = 0.134. (b) Root mean square error between experimental and predicted
outputs (analytical and numerical impulse response functions of finite-depth
water) on the semi-log graph.

In order to evaluate errors in the prediction models, a root mean square error (RMSE) is used as

RMSE(t) =

√√√√ 1

Nt(t)

N∑
i=1

(ξpred. − ξexp.)
2 (3)

where ξpred. and ξexp. are the predicted elevation and that of experimental outputs respectively, and
Nt(t) is the number of time-series data at time t. The RMSE is shown on the semi-log graph in Fig.3
(b). Comparing the analytical and numerical solutions, the result of the analytical solution is smaller
RMSE than that of the numerical outputs.
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