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1 INTRODUCTION
The flow generated by the breaking of a steep free-surface wave in a periodic domain is
simulated numerically with a two-fluids Navier-Stokes solver. The model employs a Volume-
of-Fluid (VOF) technique to distinguish the two fluids. The advection of the VOF function
is carried out by using novel schemes based on a tailored total-variation-diminishing (TVD)
limiter. The numerical solver is characterized by a low numerical dissipation, thanks to the
use of a scheme that guarantees energy conservation in the discrete form. Both two- and
three-dimensional simulations have been performed. Particular attention is paid to the anal-
ysis of the mechanisms responsible for the energy dissipation during the breaking. To this
purpose, coherent vortical structures, such as vortex tubes and vortex sheets, are identified.
A rather strong correlation between the vortical structures generated as a consequence of
the air entrainment and of the bubble fragmentation process and the energy dissipation is
found both in the mixing zone and in the pure water domain, where the coherent structures
propagate as a consequence of the downward transport. Notably, it is found that the dissi-
pation is primarily identified by the vortex sheets whereas the vortex tubes govern mainly
the intermittency.

2 COMPUTATIONAL SETUP
The two-phase flow of air and water taking place during the breaking of free surface wave
is numerically simulated by a Navier-Stokes solver for a single incompressible fluid with
variable physical properties across the interface. The fluids are assumed to be immiscible,
and the interface is implicitly tracked by means of an indicator function, i.e. the VOF
function. Hereafter, the subscripts 1 and 2 are used to denote water and air, respectively.
The governing equations in nondimensional form are

∇ · u = 0, (1)
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where u is the fluid velocity, p is the pressure, ρ is the local density, µ is the local value of
the dynamic viscosity, and j is the unit vector oriented upwards. Here, lengths are made
nondimensional with respect to the fundamental wavelength (λ), velocities by Ũ = (gλ)1/2

(with g the gravity acceleration), density and viscosity with the respective values in water,
pressure by ρ1Ũ

2. Although surface tension only acts at the interface, its effects are modelled
as a distributed volumetric force fσ = fσ (x, t), with

fσ = kδ (x− xs)n, (3)



where k is the local curvature of the interface between the two fluids n is the unit normal
of the interface, and δ is the Dirac function which localizes the force at interface points, xs
[1]. In equation (2), the Reynolds, Weber and Froude numbers are defined as Re = Ũλρ1

µ1
,

We = ρ1Ũ2λ
σ

, and Fr = Ũ2

gλ
, where σ is the surface tension coefficient, here assumed to be

constant.
The Navier-Stokes equations are solved with a classical projection method [2]. Adams-

Bashforth scheme is used for the time integration of the convective terms and for the off-
diagonal part of the viscous terms, and the Crank-Nicolson scheme for the diagonal diffusion
terms. A centered, second-order, finite-difference scheme in a staggered grid layout is adopted
for spatial derivatives[3]. The continuum surface force method [4], is used to determine the
equivalent local body force. The interface curvature is evaluated through a modified version
of the height function technique [5].

The advection of the interface is carried out by means of an algebraic VOF method [6].
After computing the passive tracer C, density and viscosity are determined from (ρ, µ) =
C+ (ρ, µ)2/(ρ, µ)1 (1− C). More details regarding the multiphase solver can be found in [7].

3 SIMULATION CONDITIONS

The model is applied to simulate the breaking generated by a steep wave in a periodic
domain. The initial free-surface elevation η(x, z) is assigned as in [8], that is
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where ε = 0.5 is the initial wave steepness, and k = 2π is the fundamental wavenumber.
A small perturbation is introduced in the initial wave profile in the form of a random shift
by a fraction (0 ≤ r(z) ≤ 1) of the grid cell size. No-slip boundary conditions are assigned
at the top and bottom boundaries. Density and viscosity ratios are assumed to be those
of water/air case, i.e. ρ1/ρ2 = 800, and µ1/µ2 = 55 and the surface tension coefficient is

chosen as 0.072 N/m. Simulations are conducted by using We = ρ1gλ2

σ
= 12262.5 and Re =

ρ1g1/2λ3/2

µ1
= 10000, and 40000. The computational domain is one fundamental wavelength

long (streamwise direction), two fundamental wavelength high (vertical direction) and, for
three-dimensional simulations, one-half fundamental wavelength wide (spanwise direction).
Assuming λ = 30cm, the resulting grid spacing in the well-resolved zone is about 0.3 mm in
the fine-mesh simulations.

4 COHERENT VORTICAL STRUCTURES AND DISSIPATION

In [8] it was shown that the bubble fragmentation process enhances the energy dissipation.
Here, the mechanisms are investigated more in depth. To this purpose, the coherent vorti-
cal structures generated during the breaking phenomenon are identified. More specifically,
here vortex tubes and vortex sheets are examined: the former are correlated with elongated
vortices whereas the second are correlated with shears [7]). Fig. 1 shows two different views
of the simulation at Re = 40000 at a given time instant, with vortex-tubes drawn in yellow
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Figure 1: Underwater vortical structures generated during the breaking: vortex-tubes and
vortex-sheets are drawn in yellow and gray, respectively.
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Figure 2: Longitudinal sections of the solutions computed at Re = 10000 (top) and
Re = 40000 (bottom). The coloured contours denote the local values of the normal-to-
plane vorticity components (left), and the local dissipation rate (right). The black solid lines
in left and right figures denote the vortex-tube and vortex-sheet iso-lines, respectively. Note
that the solutions in the water domain is shown only.

and vortex-sheets drawn in gray. It can be seen that, as a consequence of the entrainment of
the large air cavity during the breaking and of the subsequent bubble fragmentation, large
velocity gradients develops within the bubble cloud, which are reflected into the vortical
structures. In order to highlight the connections between air entrainment and viscous dis-
sipation with vortical structures, in fig. 2, slices taken in the longitudinal symmetry plane
are drawn. The results display a very close correlation between viscous dissipation and the
vortex sheet indicator, at both Reynolds numbers. Also, it is worth noticing that viscous
dissipation is not confined about the free surface, but it is spread within the bubble cloud.
Within the high-dissipation regions, marked by the vortex sheet indicator, vortex tubes also
form in zones with high vorticity. In order to retrieve more quantitative information about
the statistics among the various indicators, vertical profiles of their averages in the longi-
tudinal and spanwise directions are displayed in fig. 3. For both Reynolds numbers, the
vorticity and maximum dissipation is mainly concentrated in the mixing region. It is clear
that the concentration of high vorticity, vortical structures and dissipation happens primar-
ily where the fragmentation and bubbles productions phenomena take place. However, the
graphs shows that the viscous dissipation and the vortex-sheets are still significant in the
pure water region, whereas the vortex-tubes vanish suddenly when leaving the mixing zone.
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Figure 3: Vertical profiles of horizontal (spanwise and streamwise) averages of viscous dis-
sipation (ε), vorticity modulus (|ω|), streamwise vorticity (|ωx|), vertical vorticity (|ωy|),
spanwise vorticity (|ωz|), vorticity-like variable for vortex tubes (ωt), vorticity-like variable
for vortex sheet (ωs), and mean volume fraction (C), at Re = 10000 (a) and Re = 40000
(b). The shaded area denotes the mixing region (0.001 < C < 0.999)

The above results agrees with what is generally found, i.e. that dissipation is primarily
associated with vortex sheets, whereas vortex tubes, being generated upon sheets roll-up [9],
are much less relevant.
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