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1. INTRODUCTION
In [1], two different models were presented to determine two-dimensional wave propagation
through a finite periodic array of vertical surface-piercing barriers. One method is exact and
based on the Bloch-Floquet theory; the other method is approximate and replaces the barrier
array with an effective medium using the homogenization method. Under the wide-spacing
approximation, [2] developed a recursive model to solve for the reflection and transmission of
waves over a three-dimensional array of vertical plates. In this paper, we extend the methods
of [1] to investigate wave scattering by a plate array similar to that considered by [2], the
principal difference being that the spacing between adjacent plates is assumed small.

2. PERIODIC PLATE PROBLEM
Consider an array of thin fixed vertical plates having the same width c and extending uni-
formly throughout the water depth h. The array of paddles is periodically distributed in the
y direction with a periodicity d = a + c, a being the spacing between two adjacent plates,
while in the x direction there are N + 1 rows of parallel paddles with identical separation
b. Three-dimensional Cartesian coordinates (x, y, z) are defined such that the plates occupy
{x = nb, a +md < y < d +md,−h < z < 0} (n = 0, 1, · · · , N,m ∈ Z). A plane wave with
the angular frequency ω is incident at an angle θ relative to the positive x-axis.

Following the method of [1] we can solve wave scattering by multiple rows of plates by first
determining solutions relating to infinite rows which allows us to focus on a single periodic
cell defined by the cross-section D = {0 < x < b, 0 < y < d} based on seeking Bloch-Floquet
modes. Since the geometry is uniform in the depth, the solution can be expressed in terms
of the two-dimensional spatial potential ϕ(x, y) satisfying(

∇2 + k2
)
ϕ(x, y) = 0, in D, (1)

where the wavenumber, k, is the positive real root of K = ω2/g = k tanh kh. The no-flow
condition on the plates requires

ϕx(0, y) = ϕx(b, y) = 0, for a < y < d. (2)

Due to periodicity, on the fluid interfaces ϕ satisfies Bloch-Floquet conditions

ϕ(x, d) = eiαdϕ(x, 0), and ϕy(x, d) = eiαdϕy(x, 0), for 0 < x < b, (3)

ϕ(b, y) = eiβbϕ(0, y), and ϕx(b, y) = eiβbϕx(0, y) ≡ eiβbU(y), for 0 < y < a, (4)

where α = k sin θ is fixed by the frequency and incident wave angle and β is the Bloch
wavenumber to be determined; U(y) is defined as the horizontal velocity at x = 0. [1] has
illustrated that we only need to consider the real values of β ∈ (0, π/b] and the complex
values of β = iβ̂0 and β = π/b+ iβ̂1 (where β̂0, β̂1 ∈ R).

In D, the general solution of ϕ(x, y) satisfying (1) and (3) can be expressed as



ϕ =
∞∑

n=−∞

(
ane

iγnx + bne
−iγnx

)
eiαny, with γn =

{ √
k2 − α2

n, k ≥ |αn|,
i
√
α2
n − k2, k < |αn|,

(5)

where αn = α + 2nπ/d and an and bn for n ∈ Z are undetermined coefficients. After
substituting (5) into the velocity periodic condition in (4) and using the orthogonality of the
functions eiαny over 0 < y < d, an and bn can be expressed in terms of integrals with U(y).
Then, applying the pressure periodic condition in (4) to (5) results in

∞∑
n=−∞

cos(βb)− cos(γnb)

γnd sin(γnb)
eiαny

∫ a

0

e−iαny′U(y′)dy′ = 0. (6)

Since the analysis of flow close to the edge of the barrier reveals the velocity behaves as
the inverse square root of the distance to the edge, U(y) can be expanded as (see [3])

U(y) ≈
P∑

p=0

wpup(y), with up(y) =
Tp(2y/a− 1)

π
√
(a/2)2 − (y − a/2)2

, (7)

where P is a numerical truncation parameter and Tp(·) is a Chebyshev polynomial. Substi-
tuting approximation (7) into (6), multiply through by uq(y) and integrating over 0 < y < a
leads to the following homogeneous system of equations:

P∑
p=0

wp(−i)piq
∞∑

n=−∞

cos(βb)− cos(γnb)

γnd sin(γnb)
Jp(αna/2)Jq(αna/2) = 0, for q = 0, 1, · · · , P (8)

where Jp(·) is the pth order Bessel function the first kind. In order to determine the real

values of β ∈ (0, π/b], β̂0 > 0 and β̂1 > 0, we require (8) has a non-trivial solution. It can be
shown that the determinant of the matrix formed by elements in (8) is always real for the
values of β under consideration such that a standard root finding method can be applied.

Next, we present a useful orthogonality relation which is extensively used in the following.
For convenience, we label eigenvalues β = ±β(k) (k = 0, 1, 2, . . .) where the numbering system
is that ascending real values take precedence over complex values, ordered by their increasing
imaginary part. Each eigenvalue ±β(k) is associated with a corresponding eigenfunction
which is labelled as ϕ(±k,+). Besides, we have another two eigenfunctions ϕ(±k,−) satisfying
ϕ(±k,−)(x, y) = ϕ(±k,+)(x, a−y). After applying Green’s second identity to ϕ(+k,+) and ϕ(±j,−)

in D, as long as β(k) ̸= π/b (which relates to the standing waves) we can determine
∫ a

0

[
ϕ(+k,+)(0, y)ϕ(+j,−)

x (0, y)− ϕ(+j,−)(0, y)ϕ(+k,+)
x (0, y)

]
dy = 0,∫ a

0

[
ϕ(+k,+)(0, y)ϕ(−j,−)

x (0, y)− ϕ(−j,−)(0, y)ϕ(+k,+)
x (0, y)

]
dy = E(+k)δkj,

(9)

where E(+k) is a scaling factor.
Then, we consider the reflection and transmission of N + 1 rows of parallel plates which

is a finite section of the problem given above. The general solution in each period (n−1)b <
x < nb can be expressed by the superposition of the eigenfunctions ϕ(±k,+):

ϕn =
∞∑
k=0

[
A(k)

n ϕ(+k,+)(x− (n+ 1)b, y) +B(k)
n ϕ(−k,+)(x− (n+ 1)b, y)

]
. (10)



After applying orthogonality relation (9) to ϕn with ϕ(±j,−) and ϕn+1 with ϕ(±j,−) and using
the matching conditions for ϕn and ϕn+1 at their fluid interfaces, it can be shown that

A
(k)
n+1 = eiβ

(k)bA
(k)
n and B

(k)
n+1 = e−iβ(k)bB

(k)
n . This implies that, for any n, ϕn can be expressed

by a single set of coefficients A
(k)
1 and B

(k)
1 relating to the first period. In the outer regions

x < 0 and x > Nb, the velocity potential can be respectively written as

ϕ0 = ei(γ0+α0y) +
∞∑

n=−∞

rne
i(−γnx+αny) and ϕN+1 =

∞∑
n=−∞

tne
i(γn(x−Nb)+αny). (11)

The coefficients rn, tn are determined by matching the velocity potential across x = 0 and
x = Nb. After using the orthogonality relation (9) and decomposing the problem into a
symmetric (s) and anti-symmetric (a) problem, we obtain a pair of scalar integral equations∫ a

0

[
∞∑

n=−∞

ie−iαny

γnd
Hnk +

(
i tan(β(k)b/2)

−i cot(β(k)b/2)

)
ϕ(+k,−)(0, y)

](
U s(y)

Ua(y)

)
dy = −2H0k, (12)

where

Hnk =

∫ a

0

eiαny
∂

∂x
ϕ(+k,−)(0, y)dy. (13)

In the above, [U s(y)± Ua(y)]/2 represent the horizontal velocity across the interface x = 0
and x = Nb respectively, which can be approximated by the same expansions used in (7).
Thus, the integral equation (12) can be solved using the identical method indicated above.
After this, the total reflected and transmitted energy can be determined by

|RN |2 =
s∑

n=−r

γn
γ0

|rn|2 and |TN |2 =
s∑

n=−r

γn
γ0

|tn|2, (14)

where r = [kd(1 + sin θ)/2π], s = [kd(1− sin θ)/2π] and [·] denotes the integer part.

3. HOMOGENIZATION METHOD
In this section, we assume the separation between two adjacent plates is small compared
with the wavelength, i.e. O(kb) ≪ 1. We also assume that O(kc) ∼ O(kh) ∼ 1. After
applying a multiscale analysis, it can be shown that the leading-order velocity potential in
0 < x < Nb satisfies {

(∇2 + k2)ϕ(x, y) = 0, 0 < y < a,
(∂2/∂y2 + k2)ϕ(x, y) = 0, a < y < d.

(15)

The general solution of (15) can be expressed as

ϕ(x, y) =

{
eiµx(Aeiνy +Be−iνy), 0 < y < a,
C(x)eiky +D(x)e−iky, a < y < d.

(16)

where µ2 + ν2 = k2. Applying the periodicity conditions (3) and continuity of pressure and
velocity across y = a to (16) finally results in

2kν[cos(kc) cos(νa)− cos(αd)] = (k2 + ν2) sin(kc) sin(νa). (17)

There exist a series of real values of µ and pure imaginary values of µ = iµ̂ satisfying (17).



Now consider that the region 0 < x < Nb is occupied by the effective medium described
in above. Thus the velocity potential in this region can be approximated by

ϕ(x, y) =
∞∑
n=0

(ane
iµnx + bne

−iµnx)(Ane
iνny +Bne

−iνny), for 0 < y < a, (18)

where νn are the roots of (17), µ2
n = k2 − ν2

n and An and Bn are the corresponding eigenso-
lutions. This approximate solution is completed by matching to (11) and (18) and following
the Galerkin method given in [1].

4. RESULTS
Fig. 1(a-c) show the variation of the Bloch wavenumbers β and roots µ from homogenisation
against non-dimensional wavenumber Kh with a/c = 0.5, h/c = 1.0 and θ = π/4. As the
frequency increases, the real values of β will increase until β = π/b while µ tends to infinity.
The real values of β then move into the complex plane, moving along the half infinite line
β = π/b + iβ̂1. The pure imaginary values of β decrease to zero before moving along the
real axis. Fig. 1(d) shows the corresponding reflection coefficients when Nb/c = 1.0. As the
spacing b/c decreases, the results from the exact model gradually approach those from the
effective medium except when the real Bloch wavenumber β is close to π/b.

The fixed plates can be replaced by the paddles hinged at the sea bed and attached to the
damper and spring as a system for harnessing wave energy. This requires that the no-flow
condition (2) is replaced by a condition determined by combining dynamic and kinematic
conditions on the paddles. Results for this problem will be presented at the Workshop.

Figure 1: Variation of: (a-c) β and µ and (d) |RN | against Kh with a/c = 0.5, h/c = 1.0,
θ = π/4 and Nb/c = 1.0.
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