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Figure 1: Model of two floating solar panels (left) separated by a small gap (right) in the
heave mode of motion.

1 Introduction

The world wide push for renewable energy solutions has led to the development of Floating
PhotoVoltaic systems (FPV) on the water surface. Systems are tested in sheltered lakes
or man-made reservoirs where the FPVs benefit from a cooling from the water which
increases the performance. The FPVs are constructed by connected solar panels or thin
films floating directly on the water. Panels may alternatively be mounted on pontoons
(e.g., Dai et al., 2020; Kaymak and Sahin, 2021). FPV systems intended for localisation
in the ocean area are exposed to wave (and wind) effects. Intended horizontal extension
of the FPV systems are a few hundred meters squared. FPV systems may be composed
by several connected components, each as a rigid member responding in six degrees of
freedom. This background provides motivation for the analysis that follows.

In this note, a two-dimensional analysis is carried out for two solar panels located next
to each other and separated by a small gap (Figure 1). The length of each panel is 2a.
They are separated by a small opening of width of 2ε. In reality, the length 2a ' 2 m and
the gap distance 2ε ' 5 cm. The radiation problem of the vertical modes is considered
where the effects of added mass and damping are evaluated. The geometry is oscillating
with frequency ω. The corresponding non-dimensional wavenumber (ω2a/g) is assumed
to be small, where g denotes the acceleration of gravity. The analysis is carried out in
the long wave regime. At the scale of the panel, the double body approximation may be
justified. The two-dimensional analysis is relevant to the case of long-crested waves and
to experiments in narrow wave flumes.
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2 Mathematical formulation

A frame of reference is introduced with the x-axis at the mean free surface. The two
panels each of length 2a are located symmetrically at each side of x = 0. The y-axis is
vertical, where gravity acts along the negative vertical. Panel 1 is given a vertical velocity
V1, and panel 2 a vertical velocity V2. The fluid velocity in the gap may be characterised
by a vertical velocity Vg. This is interpreted by an average across and along the gap.

The motion of the fluid is modelled by the potential Φ where incompressibility and
irrotationality are assumed. Note that in the gap, flow separation effects are taking place
which are modelled by a quadratic Darcy formulation. The potential Φ satisfies the
Laplace equation in the fluid. Green’s theorem applied to the potential and the double
body Green function in two dimensions is used to connect Φ and the vertical velocity V
along the bottom of the panels and at the gap, where V is the union of V1, Vg and V2, and
where V = 0 for |x| > 2a+ ε. The double body Green function reads G = ln(rr1)− ln a2

where r2 = (x− x̄)2 + (y − ȳ)2 and r21 = (x− x̄)2 + (y + ȳ)2. The term − ln a2 provides a
non-dimensional form of the argument of G. This added constant is discussed further in
Section 3 below. From Green’s theorem we find (e.g., Newman, 2017)

πΦ +
∫ −ε

−2a−ε
(−GnΦ +GΦn)dx̄+

∫ ε

−ε
(−GnΦ +GΦn)dx̄+

∫ 2a+ε

ε
(−GnΦ +GΦn)dx̄ = 0, (1)

where the point of evaluation is at the underside of the plates and the gap. The index n
indicates derivative along the plate normal, pointing out of the fluid. The x̄ is integration
variable. The Green function satisfies ∂G/∂ȳ = 0 on ȳ = 0. Since the plates localised on
the water surface are thin, the Green function is evaluated at y = ȳ = 0 obtaining

πΦ(x) +
∫
V ln

(
(x− x̄)/a

)2
dx̄ = 0, |x| < 2a+ ε, (2)

and the integration is from −2a− ε to 2a+ ε.
Harmonic motion of time-dependency eiωt is assumed. Consider the case when panel

1 is moving with excursion ξ1 in heave and panel 2 is fixed. Then, Φ = Re(iωξ1φ1e
iωt),

V1 = Re(iωξ1e
iωt), Vg = Re(iωξ1v1e

iωt), V2 = 0, where Re means real part and i imaginary
unit.

2.1 Quadratic Darcy law of the gap motion

A quadratic Darcy law formulation is used to connect the vertical pressure jump and the
vertical velocity at the gap at x = 0 by −∆p/ρ = −∂Φ/∂t = (1/2)K0|Vg|Vg where K0 is
a dimensionless constant – a drag coefficient – that characterises the flow of the gap, ρ is
density and t time (e.g., Molin and Remy, 2013, Dokken et al., 2017). Applying equivalent
linearisation we obtain at the gap:

Re
(
− (iω)2ξ1φ1(x = 0)eiωt

)
= A0ω|ξ1|v1|Re

(
iωξ1v1e

iωt
)
, (3)

where A0 = (1/2)(8/3π)K0 = (4/3π)K0, giving −iφ1(x = 0) = A0|ξ1||v1| v1.
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Use of (2) obtains the potential at the gap by πφ1(x = 0) ' −
∫−ε
−2a−ε ln

(
x̄/a

)2
dx̄ =

4a(1− ln 2) where terms ε/a << 1 are omitted. This obtains

v1 = −i [φ1(0)/(A0|ξ1|)]1/2 = −i [3(1− ln 2)/K0)]
1/2 (a/|ξ1|)1/2 (4)

2.2 Force on panel 1

The force on panel 1 is obtained by integrating the time derivative of (2) over the panel.
The pressure is given by p = −ρΦt = −ρRe((iω)2ξ1φ1e

iωt), and the unit normal by 1.
The potential φ1(x) is integrated from −2a− ε to −ε:∫ −ε

−2a−ε
φ1(x)dx

= − 1

π

∫ −ε

−2a−ε

∫ −ε

−2a−ε
ln
(
(x− x̄)/a

)2
dxdx̄− v1

π

∫ −ε

−2a−ε

∫ ε

−ε
ln
(
(x− x̄)/a

)2
dxdx̄. (5)

Evaluation of the integrals gives

F (t)pan1 = Re
(
eiωtξ1[ω

2Ãpan1 − iωB̃pan1]
)
, (6)

where

Ãpan1
ρa2

=
4

π
(3− 2 ln 2),

B̃pan1

ωρa2
=

2ε√
K0a|ξ1|

4

π
[3(1− ln 2)3]1/2. (7)

2.3 Added mass vs. mass force

The mass of panel 1 equals m = d0 2a ρ, where d0 is the submergence. The resonance fre-
quency of the panel becomes (where no restoring forces other than the buoyancy applies):

ω2
na

g
=

1

d0/a+ (2/π)(3− 2 ln 2)
. (8)

The first term of the denominator is approximately 0.01 while the latter is 1.03. The
expression suggests that the effect of added mass is very important to the vertical response
where resonance occurs for waves that are three times the length of the panel. Estimate
of the factor K0 is needed to properly determine the damping coefficient.

2.4 Force on panel 2

The potential φ1(x) integrated from ε to 2a+ ε obtains:∫ 2a+ε

ε
φ1(x)dx

= − 1

π

∫ 2a+ε

ε

∫ −ε

−2a−ε
ln
(
(x− x̄)/a

)2
dxdx̄− v1

π

∫ 2a+ε

ε

∫ ε

−ε
ln
(
(x− x̄)/a

)2
dxdx̄, (9)
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giving

F (t)pan2 = Re
(
eiωtξ1[ω

2Ãpan2 − iωB̃pan2]
)
, (10)

where

Ãpan2
ρa2

=
12

π
(1− 2 ln 2),

B̃pan2

ωρa2
=

2ε√
K0a|ξ1|

4

π
[3(1− ln 2)3]1/2. (11)

3 Comments on the Green function

Use of G = ln(rr1) implies that the added mass forces become:
Ãpan1/(ρa

2) = (4/π) (3− 2 ln 2)− (8/π) ln a,
Ãpan2/(ρa

2) = (12/π) (1− 2 ln 2)− (8/π) ln a.
The potential φ1 at x = 0, with implications for the damping coefficient, becomes

φ1(x = 0) = (4/π)a(1− ln 2)− (4/π)a ln a.
Adding the constant − ln a2 contributes to the added mass forces by (2a)2 ln a2 which
should be divided by the prefactor π, and cancels exactly the log-terms in Ãpan1/(ρa

2)
and Ãpan2/(ρa

2). This shows that the added mass coefficients are proportional to the
panel length squared. The similar conclusion regards the damping coefficient, where the
correction term in φ1 becomes 2a ln a2 /π. The potential φ1(x = 0) and φ1 as such is
proportional to the panel length.

4 Generalisation

The forces due to oscillations in heave of panel 2 are readily obtained from the forces
on panel 1, because of symmetry. This is true also for the force on panel 1 due to the
oscillatory panel 2. If both panels are oscillating, the nonlinear relation (3) includes the
coupled effects of the oscillation amplitudes of panels one and two. The moment on the
panels are easily evaluated. The effect of a yaw (or roll) motion is modelled similarly
as for the heave problem. The vertical velocity V in (2) is then generalised including
the yaw velocity of the panels. The force on several panels is obtained by extending the
procedures for the two panels.
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