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1 INTRODUCTION
The objective of this research is to develop a time-domain implementation of the classic slender
body theory of Tuck[1] and Newman[2] to support computation of ship motions in time-domain
simulations, with intermediate accuracy and execution time between strip theory and 3D methods.

2 FORMULATION
The formulation of the problem assumes inviscid, irrotational, fluid flow. For the purposes of this
project we are considering only vertical plane motions in head seas. We adopt the slender body
assumption that longitudinal derivatives of potential are an order of magnitude smaller than lateral
derivatives. We also adopt the weak scatterer hypothesis of Pawlowski[3], which assumes that body
disturbances of the incident wave are higher order and thus the inner problem can be linearized
about the incident wave profile, with the usual linearized free surface boundary condition.

The slender body assumption allows the problem to be separated into incomplete inner and
outer problems. The inner problem includes the body boundary condition, equating the normal
component of body velocity with the normal derivative of velocity potential on the body surface; and
with a rigid wall free-surface boundary condition. The outer problem includes the far-field radiation
condition with the linearized time-domain free-surface boundary condition. The complete problem
is then solved using the method of matched asymptotic expansions, matching the inner expansion
of the outer expansion (IEOE) with the outer expansion of the inner expansion (OEIE).

3 SOLUTION
The 3D outer expansion is represented by a line array of transient sources (Green functions per
Wehausen & Laitone[4]). The 2D inner expansion is represented by a heaving 2D section with
a body-boundary condition based on the instantaneous immersion (the ‘body-exact’ assumption).
The weak scatterer assumption permits the problem in the time domain to be formulated in a
transformed physical domain, as illustrated in figure 2. This approach follows Sclavounos[5] and
Walree & Turner[6].

3.1 The Inner Solution
Far enough away from the body, the 2D disturbance behaves as if generated by an equivalent 2-D
logarithmic source plus an additive function of axial position to render each section solution unique.
This general outer expansion of the inner solution (OEIE) is then given as

Φ(X, t) = lim
R>>1

{Φ2D(X, t) + b(X, t)} ' σ(x, t) ln r0 + b(X, t) (1)

In the time domain, the body boundary condition for the inner problem has two principal parts:
a vertical, ‘plunging wave-maker’ component due to the relative vertical velocity of body-wave



radiation/diffraction motions; and a forward speed section-area dilation effect related to the product
UAx, as implied in figure 3, with δx = Uδt, and with ship velocity U adjusted by the longitudinal
component of wave orbital velocity, which also partially accounts for the diffraction component of
the problem. This body boundary condition is nonlinear (or ’body exact’), being applied at the
instantaneous section immersion. On the instantaneous position of the wave surface at each section
the first order (rigid wall) free surface condition is applied.

3.2 The Outer Solution
This solution is based on the 3D transient boundary Green function leading to a general outer
solution, for a line array of such sources on the free surface, with general axial source strength
distribution m(ξ, τ), in a space-fixed reference frame,

φ(x, t) = 2

∫
L
dξ

∫ ∞
0

dk (gk)1/2 ekz
∫ t

0
dτ m(ξ, τ) sin

[
(gk)1/2(t− τ)

]
J0(kR(x− ξ(τ), y)) (2)

In order to obtain an inner expansion of the outer expansion (IEOE) with a corresponding
functional term in common with the OEIE, we need to obtain a logarithmic singularity. This we
do by performing an integration by parts. This yields

φ(x, t) ≈ −2m(x, t) ln r +

∫ ∞
−∞

m′(ξ, t)
[

sgn(x− ξ) ln 2|x− ξ|
]
dξ

− lim
y,z→0

2

∫
L
dξ m(ξ, 0)

∫ ∞
0

dk ekz cos
[
(gk)1/2(t)

]
J0(kR(x− ξ(0), y))

− lim
y,z→0

2

∫
L
dξ

∫ ∞
0

dk ekz
∫ t

0
dτ cos

[
(gk)1/2(t− τ)

] (
ṁ(ξ, τ)J0(kR(x− ξ(τ), y))

+m(ξ, τ)J̇0(kR(x− ξ(τ), y))
)

(3)

3.3 The General Matching Solution
Matching the OEIE and IEOE leads to the general matching solution

m(ξ, t) =
1

2
σ(x, t) (4)

b(X, t) =

∫
L
m′(ξ, t)

[
sgn(x− ξ) ln 2|x− ξ|

]
dξ

− 2

∫
L
dξ m(ξ, 0)

∫ ∞
0

dk cos
[
(gk)1/2(t)

]
J0(kR(x− ξ(0), 0))

− 2

∫
L
dξ

∫ ∞
0

dk

∫ t

0
dτ cos

[
(gk)1/2(t− τ)

] (
ṁ(ξ, τ)J0(kR(x− ξ(τ), 0))

+m(ξ, τ)J̇0(kR(x− ξ(τ), 0))
)

(5)

This result is completely general for any spatial-temporal source-strength distribution
m(ξ, τ), without the restriction that R 6= fn(τ).

1. the first term of b(X, t) accounts for the longitudinal interaction of the non-wave part;

2. the second term of b(X, t) accounts for the initial transient effect; and

3. the third term of b(X, t) accounts for the longitudinal interaction of the wave part, dependent
on the dynamics of vertical motion of the body relative to the free surface (represented by
m(ξ, τ) and ṁ(ξ, τ)) and the horizontal plane motions of the body (represented by J0(kR(x−
ξ(τ), 0) and J̇0(kR(x− ξ(τ), 0))).



3.4 Reduction to Computational Form - Use of the Kochin Integral Approach
For application in a step-wise time-domain code, the general time-domain result must be reduced
to a computational form in which the temporal variable is the outer integral, and the axial integral
is the second-outer integral.

This is necessary to allow progressive integration of the evolving time series of results; that is,
in the most general case, at each time-step we have to perform an axial integration to calculate
whole-body force and moment to determine the motion of the body at the next time-increment,
and the axial integration includes the contributions of all previous disturbances by virtue of the
dk integral including the propagation lag from the prior trajectory of motion. This requires that
the wavenumber integral be reduced first to get a computational form featuring only temporal and
spatial integrations.

Consider the time-dependent part of the general solution for the interaction function b(X, t),
the third line of eqn (5). With the transform of coordinates to body-fixed axes (since the matching
must occur in the moving reference frame of the slender body), and a change of order of integration,
the function b(X, t) becomes

b3(X, t) = −2

∫ t

0
dτ

∫
L
dξ ṁ(ξ, τ)

∫ ∞
0

dk J0(k[|x− ξ|+ U(t− τ)]) cos
[
(gk)1/2(t− τ)

]
− 2

∫ t

0
dτ

∫
L
dξ m(ξ, τ)

∫ ∞
0

dk J̇0(k[|x− ξ|+ U(t− τ)]) cos
[
(gk)1/2(t− τ)

]
(6)

By use of the Kochin integral approach, in [4], § 22, the first dk integral can be reduced to closed
form as a difference of products of fractional Bessel functions of the first kind. Thus, we have

Ik1 =

∫ ∞
0

cos
[
(gk)1/2(t− τ)

]
J0(kR)dk = − π√

2

ρ

R

[
J1/4 (ρ)J3/4 (ρ)− J−1/4 (ρ)J−3/4 (ρ)

]
(7)

ρ = ω2/2 = g(t− τ)2/(8R), R = [|x− ξ|+ U(t− τ)] (8)

For the corresponding second dk integral we need to adapt the Kochin formula approach, ending
with

Ik2 = U
π√
2

{
g(t− τ)2

R2

}{[
J−1/4 (ρ)J−3/4 (ρ)− J1/4 (ρ)J3/4 (ρ)

]( 1

4R

)

+
[
J1/4J7/4 + J3/4J5/4 − J−1/4

(
2J1/4 − J−7/4

)
− J−3/4

(
2J3/4 − J−5/4

) ](g(t− τ)2

128R2

)}
(9)

4 VALIDATION

Analytical verification involves the substitution of the motion particulars of two special cases—
the calm water forward speed problem and the zero-speed regular-wave radiation problem—into
the general solution at eqn (5) and reduction of the inner (dτ) integral. This allows the classic
solutions to be recovered. This has been done. It is intended to validate the formulation against
forces from the Wigley hull experiments of Journée[7], and the USN ‘Force Study’ results of Telste
& Belknap [8],[9].

5 CONCLUSION
The foregoing has summarized the objectives, approach, and interim results of this attempt to
formulate a time-domain slender ship theory for a vessel advancing into large amplitude random
head seas.
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(b) Outer Problem - the Far-field

Figure 1: Two Views: The Essence of Slender Ship Theory (General Case)

z

x

actual immersed hull surface
(a) Actual Immersed Hull Surface

ξ

x

transformed immersed hull surface
(b) Virtual Immersed Hull Surface

Figure 2: Computational Domain
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Figure 3: 2D Body Dilation
with forward speed and section heave


