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1 INTRODUCTION
The evaluation of extreme ship statistics plays a vital role in ship design for at-sea integrity and
crew safety. The direct computation (by simulating the ship going through a very long wave
field), however, is prohibitively expensive due to the high dimensionality of the random wave
field, the rareness of the extreme responses, and the expensiveness of the numerical model. To
reduce the computational cost, techniques including wave field parameterization and sequential
sampling has been introduced in previous works [1, 2, 3]. These works all assume a narrowband
wave spectrum, which enables the representation of the wave field by consecutive Gaussian groups
(figure 1(a)). In contrast, the realistic wave fields are mostly broadband, where groups do not
necessarily form Gaussian shape (figure 1(b)). In this work, we extend our previous work on
temporal exceeding probability [3] to broadband wave fields. A new wave field parameterization
and the associated sequential sampling algorithm are developed, followed by a validation case
demonstrating the effectiveness of new methodology.

2 METHODOLOGY
We consider a long wave elevation time series η(t), t ∈ [0, Tend] generated from a broadband wave
spectrum with significant wave height Hs and peak period Tp. Our objective is to evaluate the
temporal exceeding probability of ship responses (i.e., the percentage of time that the ship response
is larger than a threshold rs) when a ship goes through the wave field, defined as

Ptemp =

∫ Tend

0 1
(
|r(t)| − rs

)
dt

Tend
, (1)

where r(t) is the time series of ship response caused by waves η(t) and 1(·) is the indicator function.
When coupled with high-fidelity ship simulations (e.g., CFD), the computational cost of Ptemp

can become prohibitively high. In order to reduce the computational cost, two essential components
are developed: a wave group parameterization method to reduce the dimensionality of the wave
field and a sequential sampling method to reduce the number of samples (in the low-dimensional
parameter space). These two components targeting broadband wave fields are presented next.

2.1 Wave parameterization
Inspired by [4], we define a (dangerous) wave group as a series of consecutive single waves (based
on zero-crossing) with amplitudes above a given threshold, here set as ∆η = Hs/2 (figure 2 (a)).
If groups are too close to each other, i.e., separated by only one wave below the threshold, we will
treat them as one group. For example, the second group enclosed in figure 2 (a) is considered as a
single group, which contains three continuous waves with two above the threshold and the middle
one below the threshold. Each wave group is parameterized by its length l and maximum amplitude
a. The collection of all groups provides a two-dimensional parameter space with known probability
density function (PDF) pLA(l, a) (figure 2 (b)).

This parameterization significantly reduces the dimension of the wave field, paving the road for
a feasible low-dimensional sampling. However, complete neglect of reduced dimensions will lead
to an inaccurate result considering the intrinsic high-dimensionality of the broadband wave field.



Figure 1: Wave fields generated from (a) narrowband and (b) broadband spectra. The narrowband
wave field (a) can be parameterized by Gaussian groups denoted by ( ) as in existing work [3],
but the broadband wave field (b) contains wave groups that are much less Gaussian-like.

Figure 2: (a) Wave groups (the shaded region) in a broadband wave field. (b) The PDF of the
low-dimensional parameter space (L,A), with the two parameters normalized by peak wave period
Tp and significant wave height Hs. (c) Six different wave groups with the same parameter (l =
3Tp, a = 0.75Hs) (⋆ in (b)).

For example, groups with the same characteristic length may have significantly different detailed
shapes (figure 2 (c)). These different detailed shapes, together with the random initial condition
of ship encountering each wave group (denoted jointly by ω), lead to a random exceeding time for
groups with the same parameters. Accounting this randomness associated with the low-dimensional
parameter space, (1) can be rewritten as:

Ptemp =
m

Tend

∫
Eω[S(l, a, ω)]pLA(l, a) dlda, (2)

where m is the number of wave groups in [0, Tend], S(l, a, ω) =
∫
1
(
|r(t; l, a, ω)| − rs

)
dt is the time

of responses r(t; l, a, ω) exceeding rs in group (l, a) with randomness ω.
In order to incorporate randomness ω in constructing the function S(l, a, ω), after a sample

(l, a) is chosen, we randomly select a wave group with parameter (l, a) in η(t), and simulate ship
responses starting from several waves ahead of the selected group (for the pointed group in figure 2
(a), the computational domain is the black dashed window). In this way, we naturally incorporate
the randomness from both the detailed wave form and initial responses.

2.2 Sequential sampling
We then design an efficient sequential sampling method based on the Bayesian experimental design



(BED) for the computation of (2) without evaluating of S(l, a, ω) for all groups. We will next
introduce two basic components of this BED: (1) an inexpensive surrogate model to obtain S(l, a, ω)
and (2) an acquisitive function based on which to select the next-best sample sequentially.

We use the Gaussian process regression (GPR) as the surrogate model which provides with
both function prediction and uncertainty. However, the direct learning of S(l, a, ω) by GPR is
problematic (see [3] for more details). Instead, we focus on a transformation of S defined as:

h(l, a, ω) =


S(l, a, ω)

l
, if S(l, a, ω) > 0

rmax(l, a, ω)− rs
rs

, if S(l, a, ω) = 0

, (3)

where rmax is the maximum response in this group and the second branch in (3) is introduced to
ensure that h is a smooth function. To continue, we re-write h as:

h(l, a, ω) = h(l, a) + δ(ω), (4)

where h and δ respectively represent the mean and random part of h. In GPR, given a dataset D =
{(li, ai), h(li, ai, ω)}i=n

i=1 consisting of n inputs and the corresponding outputs, we can approximate
(4) as:

h(l, a)|D ∼ GP(µh(l, a|D), σ2
h(l, a|D)), (5)

δ(ω)|D ∼ N (0, σ2
0|D), (6)

with µh and σ2
h respectively the posterior mean and variance of h. The uncertain component δ(ω)

is approximated as an independent Gaussian with constant variance σ2
0. We note that a more

accurate representation with (l, a)-dependent variance is possible with the heteroscedastic GPR
applied in [5].

After the GPR of h is available, we can recover function S by S ≡ 1(h)h l and compute Ptemp

using (2). Due to the uncertainty in h, Ptemp is a random variable with randomness estimated by

U |D =

∫ (
Eω[S

+(l, a, ω)| D]− Eω[S
−(l, a, ω)| D]

)
pLA(l, a) dlda, (7)

where S±(l, a, ω| D) = 1
(
µ±
h (l, a) + δ(ω)| D

)(
µ±
h (l, a) + δ(ω)| D

)
l with µ±

h = µh ± σh the upper

and lower bounds of h prediction. We then select the next sample which is expected to reduce the
uncertainty in Ptemp significantly, i.e., a sample corresponding to the maximum of the integrand in
(7):

l∗, a∗ = argmaxl,a
(
Eω[S

+(l, a, ω)| D]− Eω[S
−(l, a, ω)| D]

)
pLA(l, a). (8)

This sampling selection procedure will be repeated until the computation budget limit is reached.

3 RESULTS
In this section, we validate the proposed method with ship responses r(t) simulated by a roll
equation:

r̈ + α1ṙ + α2ṙ|ṙ|+ (β1 + ϵ1 cos(θ)η(t))r + β2r
3 = ϵ2 sin(θ)η(t), (9)

which models the ship roll response due to nonlinear resonance and parametric roll in oblique
irregular waves. Empirical coefficients are set as α1 = 0.35, α2 = 0.06, β1 = 0.04, β2 = −0.1,



(a) (b)

Figure 3: (a) Results of Ptemp calculated by random sampling ( ), LH sampling ( ) and se-
quential sampling ( ) in comparison with ground truth ( ). The shaded region represents one
standard deviation above the mean estimated from 100 applications of each method. (b) Positions
of initial samples ( ) and sequential samples ( ) in the parameter space with a contour plot of
Eω[S(l, a, ω)]pLA(l, a).

θ = π/6, ϵ1 = 0.016, and ϵ2 = 0.012. The wave field η(t) to be parameterized is generated from a
JONSWAP spectrum with Hs = 12m, Tp = 15s, and γ = 3.

Following procedures in §2, the result of Ptemp computed by the proposed method for rs = 0.3 is
shown in figure 3 (a). For comparison, we also present results from random sampling (by randomly
select groups following distribution PLA(l, a)), Latin hypercube (LH) sampling (by uniformly cov-
ering the parameter space) along with the true solution of Ptemp (by brute-force calculations for
the whole η(t) from t = 0 to t = 2.5 million Tp). The sequential sampling is conducted with an
initial data set of 60 LH samples, followed by 150 sequential samples. In order to have a fair com-
parison, we perform all three sampling methods 100 times starting from different initial samples,
and present the mean and stand deviation of the results. It is clear that the sequential sampling
result approaches to the true solution of Ptemp much faster with a smaller uncertainty than those
from random and LH samplings.

We further plot the sample positions with the contour of Eω[S(l, a, ω)]pLA(l, a) in figure 3
(b). We note that Eω[S(l, a, ω)]pLA(l, a) provides a measure of the importance of groups (l, a) in
computing Ptemp, which can also be seen from (2). As shown in the figure, most sequential samples
are driven to the region with significant Eω[S(l, a, ω)]pLA(l, a), indicating the effectiveness of our
BED algorithm.
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