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1 Introduction

A force-free immersed boundary method is developed based on a primitive variable formulation
of the Navier-Stokes equations, using Chorin’s projection method. In the proposed method, the
predetermined motion of a rigid structure is considered, and the rigid domain velocity field is
imposed on the formulation by patching the rigid-body motion onto the fluid domain velocity
field in the predictor step of the formulation. The capability of the method in handing two-phase
fluid interaction with a structure is examined. For a two-phase fluid with large density and
viscosity ratios, the Laplacian operator becomes discontinuous. The interface evolution under
the effect of an oscillating heaving cylinder based on the setup presented in [1] is considered.
Before examining the method’s accuracy in solving fluid-structure interaction (FSI) problems
comprising two fluids with high density and viscosity ratio, the classical problem of an oscillating
cylinder in a quiescent fluid is considered, and the results are compared with [2] and [3].

2 Governing Equations

Using Chorin’s projection method based on the Helmholtz-Hodge theorem, the primitive for-
mulation of the Navier-Stokes equation can be expressed in the following form
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where V' = [u,v] is the fluid velocity vector (in 2D), P is the dynamic pressure, p,v are the
fluid density and kinematic viscosity, 0t is the time-step size and superscript n =0, 1,..., is the
time step number. The foregoing equations can be redefined for two phase flow by considering
the one-fluid formulation and a variable definition of the kinematic viscosity and density. For
achieving an smooth distribution at the interface, a re-initializing process must be executed
during numerical integration in time. The initial distribution and re-initializing process can be



expressed as follows
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where, & denotes the distance vector in space to the interface, and A = oAz that o > 1. To
capture the interface evolution the level set transport equation is solved based on an updated
velocity field.
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For regularizing the viscosity and the inverse of the density, a discrete convolution is used
in practice [4] as follows.
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where i, j are the discrete control volume indices. It should be noted that v in equation (1) is
calculated based on the regularized density and viscosity of equations (9) and (10). In using
two phase model one will encounter a discontinuous Laplacian operator in the pseudo pressure
Poisson equation. Here the discretized form of this equation is expressed. For imposing the
structure velocity field to the fluid velocity field, the predetermined velocity field is patched
onto the velocity field in the predictor stage of the solution. This non-solenoidal patching is
corrected during the corrector stage and a full Eulerian monolithic solver is formed.
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Figure 1: Vorticity isolines at four phases of oscillation. Dashed and solid lines indicate the
negative and positive values, respectively.

3 Results and Conclusions

The oscillation of a circular cylinder in a quiescent fluid has been investigated frequently in
the literature. This flow concerns two dimensionless parameters, i.e., the Reynolds number,
Re = Uppa D /v and Keulegan-Carpenter number, KC' = U,,.../ f D, where D is a characteristic
length and f is the oscillation frequency. The motion of the cylinder is prescribed by z.(t) =
—% sin(2w ft), where x. indicates the location of the cylinder center. The Reynolds number and
Keulegan-Carpenter numbers are set to 100 and 5, respectively. The computational domain is
a square of size 20D in both directions with a circular cylinder initially located at the center
of the domain. Vorticity isolines at four phase angles of oscillation after beginning the vortex
shedding are shown in figure 1. The symmetric and anti-symmetric distribution of the u and v
velocities along the y axis is shown in figure 2 which are in good agreement with the numerical
data of [2] and [3].

The capability of the model to simulate the wave motion at the fluid interface under the
effect of predetermined motion of a structure is also evaluated. The interface is captured for
six phases of cylinder oscillation in figure 3. The frequency and amplitude of the oscillation are
v/g/R and 1.75R, where R is the cylinder radius. The initial vertical position of the cylinder
in 0.3R underneath of the interface. Examples with a floating structure including comparison
with benchmark results will be presented at the workshop.
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Figure 2: The velocity profiles u (top) and v (bottom) at four x locations in three phases of
oscillation: z = —0.6D (- -CJM), x = 0.0D (—AA), x =0.6D (—-—oce) and z = 1.2D (—>»).
The hollow and solid symbols correspond to the numerical and experimental data of [2] and
[3], respectively, lines are the current calculations.
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Figure 3: Waves generated by an oscillating submerged cylinder at various phases of the motion.



