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HIGHLIGHTS The impact of static compression of ocean water on surface wave gen-
eration due to a rise in the circular portion of the ocean floor is considered. The region-wise
depth-dependant functions are obtained using separation of variables method. the analyt-
ical solution is obtained with the help of eigenfunction expansion method after applying
the matching conditions and a newly defined inner products between the depth-dependent
functions.

1 INTRODUCTION
The generation of surface ocean waves due to ocean floor movement is of paramount im-
portance due to the possible generation of tsunami waves whose devastating impact on the
coastal areas has been witnessed throughout history. The destruction caused by the 2004 In-
dian Ocean (Sumatra earthquake), the 2011 Tohoku Oki, 2018 Sulawesi, and Palu tsunamis
are some of the contemporary ones. Consequently, the development of a model accurate
enough to simulate the motion of such a surface wave kept on attracting the minds of re-
searchers all over the world for over a century, if not more. Amongst all the different types of
models developed over the years, the ones incorporating ocean water compressibility provide
more accurate surface wave propagation compared to the ones that neglect such compress-
ibility. Detailed progress on this aspect can be found in literature (1; 2; 3; 4; 5). We consider
the motion of a circular portion of the ocean floor and find out the the analytical expression
for the surface profile when the ocean water is considered compressible.

1.1 Mathematical formulation
We consider free-surface gravity wave propagation due to vertical movement of a circular
portion area of radius a in a compressible ocean of finite depth h. The respective physical
problem is formulated in a three-dimensional polar coordinate system having z- axis pointing
upwards and perpendicular to the (r, θ) plane. The ocean bed is characterized as rigid and
the portion of the oscillating bottom lies in r < a. A wave propagation due to the ocean
floor disturbance is realized towards the radial direction under the assumption of linearised
water wave theory. The flow is considered irrotational. We are interested in calculating the
the time-dependent motion of the fluid due to a movement of the seafloor, simulating the
generation of a Tsunami in three dimensions. If the portion of the ocean bed grows at an
arbitrary rate l(t) in the time interval (0, τ), the ocean bottom profile will be given by

ĥ(r, θ,−h, t) = −h+ {L(t)H(t(τ − t)) + lmaxH(t− τ)}H(r, θ), (1)
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Figure 1: Schematic diagram of the physical problem in a compressible ocean having a flat
circular rising bottom.

where

H(r, θ) =

{
1 if r < a,
0 if r > a

(2)

In addition,
dL

dt
= l(t) with L(0) = 0 and L(τ) = lmax. Now defining a velocity potential

Φ(r, θ, z, t) in the fluid region, the boundary value problem (BVP) can be written as

∇2
(r,θ,z)Φ =

1

c2
(Φtt + gΦz) in − h < z < 0, (3a)

Φtt + gΦz = 0 at z = 0, (3b)

Φz = l(t)H(r, θ)H(t(τ − t)) at z = −h, (3c)

where ∇2
(r,θ,z) represents the Laplacian operator in (r, θ, z) space.

1.2 Solution
Applying Fourier transformation in the time variable of the form

ϕ(r, θ, z, ω) =

∫ ∞

0

Φ(r, θ, z, t)e−iωtdt, (4a)

whose inverse transform is given by

Φ(r, θ, z, t) =
1

2π

∫ ∞

0

ϕ(r, θ, z, ω)eiωtdω, (4b)

The boundary value problem (BVP) will be converted to

∇2
(r,θ,z)ϕ =

g

c2
ϕz −

ω2

c2
ϕ in − h < z < 0, (5a)

−ω2ϕ+ gϕz = 0 at z = 0, (5b)

ϕz =

{
ζ0(ω) if r < a,
0 if r > a

at z = −h, (5c)



where

ζ0(ω) =

∫ ∞

0

l(t)e−iωtdt

The above BVP is equivalent to the BVP corresponding to the motion of a portion of the
ocean bottom oscillating vertically with a maximum amplitude of ζ0(ω). There are two
solutions corresponding to r > a and r < a. These two solutions differ by a particular
solution fp, a function of z only, due to non-zero boundary condition (5c) for r < a. Let us
first find fp(z) with ζ0(ω) = 1. The BVP to find the particular solution turns out to be

f ′′
p − γϕ′

p +
ω2

c2
ϕp = 0, (6a)

f ′
p =

ω2

g
ϕp, z = 0, (6b)

f ′
p = 1, z = −h (6c)

The final form of fp is

ϕp(z) = ζ0(ω)
eγ(z+h)/2

[(
ω2

g
− γ

2

)
sinh (ksz) + ks cosh (ksz)

]
(

ω2

c2
− ω2γ

2g

)
sinh (ksh) +

ω2ks
g

cosh (ksh)
, where k2

s = (γ/2)2 − ω2/c2.

The solution of BVP with the homogeneous boundary condition at z = −h is given by
(assuming symmetry in the θ coordinate)

ϕ(r, z, ω) =
∞∑
n=0

αnK0(knr)fn(z). (7)

for some arbitrary constants αn and fns are defined by

fn(z) =
e(γz/2)

(
γ
2
sinµn(z + h)− µn cosµn(z + h)

)
γ sin (µnh)− 2µn cos (µnh)

, (8)

where µn satisfies the dispersion relation

ω2

g
= −µ

[
1 +

(
γ
2µ

)2
]
tanµh

1−
(

γ
2µ

)
tanµh

. (9)

with µ2 = (γ/2)2+ k2−ω2/c2. Hence we write the potentials in the regions r > a and r < a
as

ϕin(r, z, ω) =
∞∑
n=0

AnI0(knr)fn(z) + ζ0fp(z), ϕout(r, z, ω) =
∞∑
n=0

BnK0(knr)fn(z). (10)

Applying the boundary conditions at r = a,

AnI
′

0(kna)−BnK
′

0(kna) = 0 for n = 0, 1, 2, . . . . (11a)

and AnI0(kna)−BnK0(kna) = −ζ0
⟨fn, fp⟩c
⟨fn, fn⟩c

, for n = 0, 1, 2, . . . , (11b)



where the inner product
〈
fn, fp

〉
c
is defined by by

⟨fn, fp⟩c : =
∫ 0

−h

e−γzfn(z)fp(z) dz

=

{
ω2

g

(
coshµnh− cosh ksh

µ2
n − k2

s

)
−
[

γ

2µn

(
ω2

g
− γ

2

)
+ µn

]
sinhµnh

µ2
n − k2

s

+

[
γ

2ks

(
ω2

g
− γ

2

)
+ ks

]
sinh ksh

µ2
n − k2

s

}/
Fn(ω, γ) (12a)

where

Fn(ω, γ) =

{(
ω2

c2ks
− ω2γ

2gks

)
sinh (ksh) +

ω2

g
cosh (ksh)

}(
γ

2µn

sinh (µnh)− cosh (µnh)

)
e

−γh
2 .

Similarly, the other inner product is defined by and equals

⟨fn, fm⟩c : =
∫ 0

−h

e−γzfn(z)fm(z) dz,

=

sinh 2µnh
4µn

(
γ2

4µ2
n
+ 1

)
+ h

2

(
1− γ2

4µ2
n

)
− γ

4µ2
n
(cosh 2µnh− 1)(

γ
2µn

sinh (µnh)− cosh (µnh)
)2 δmn. (13)

Subsequently, the unknown coefficients An and Bn are written as

An = −aζ0kn
⟨fn, fp⟩c
⟨fn, fn⟩c

K1(kna) and Bn = aζ0kn
⟨fn, fp⟩c
⟨fn, fn⟩c

I1(kna) (14a)

Finally, taking the inverse Fourier transformation defined in Eq. 4b, we get back the time-
dependent potential function and subsequently derive the surface elevation with z-derivative.
The numerical results will be shown during the presentation.
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