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Introduction
Moving disturbances on the seafloor are used as wave makers to generate long waves. Past studies
on generation of periodic waves by moving disturbances on the seafloor are rare. The problem was
investigated by Chen et al. (2022) who considered a vertically oscillating disturbance. In this work,
attention is confined to generation of periodic waves by horizontally oscillating disturbances on the
seafloor by use of the Level I Green-Naghdi (GN) equations. The GN results are compared with the
results of the computational fluid dynamics (CFD) method, and very good agreement is observed.
Then a range of variables, including geometrical shape of the disturbance and disturbance oscillations,
are considered to assess their effect on the waves generated. It is shown that regular linear and
nonlinear waves can be generated by horizontal oscillations of bottom disturbances.

The level I GN Equations
By postulating a kinematic assumption over a deformable fluid sheet, Green & Naghdi (1976) devel-
oped the GN equations to study nonlinear wave propagation in an inviscid and incompressible fluid.
The GN equations are classified based on the functions used to prescribe the distribution of vertical
velocity over the water column. In the Level I GN equations, the vertical velocity field is distributed
linearly and the horizontal velocity is constant over the water column. The GN equations of any levels
satisfy the nonlinear boundary conditions and conservation of mass and postulates conservation of
momentum in an integrated manner. There is no further kinematic limitation for the flow field in the
theory i.e. the fluid flow can be rotational.

In this study, a deformable fluid sheet is established in two dimensions. The right-hand side
Cartesian coordinate system is used, where x1 points towards the right and x2 points upwards, against
the gravity. Ertekin (1984) provided a compact form of the Level I GN governing equations as

η,t + {(h + η − α)u1},x1 = α,t, (1)
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where η is the surface elevation, measured from the still-water level (SWL), h is the constant water
depth, α is the bottom deformation, u1 and u2 are the horizontal and vertical velocities, respectively,
g is the gravity acceleration, ρ is the water density, p̂ is the pressure on the top surface of the fluid
sheet. The subscripts after comma indicates partial differentiation with respect to the corresponding
variables. For an arbitrary variable θ, θ̇ and θ̈, represent the first-order and second-order material
derivatives, respectively. All variables in this study are dimensionless by using ρ, g and h, as a
dimensionally independent set, and thus we write
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The superscript (′) are removed from all variables for simplicity.

Horizontally oscillating bottom disturbance
In this study, the moving bottom disturbance oscillates harmonically in the horizontal direction.
Hence, attention is confined to the continuous moving disturbance on the seafloor, as shown in Fig. 1.
The bottom disturbance, α(x1, t), is an arbitrary continuous function of x1 and t. In this study, we use
the following function to describe the deformation of the seafloor, although this can be any continuous
function in general, α(x1, t) = A0 ×R(x1, t)×D(x1, t) , (5)



Figure 1: The sketch of the problem of waves generated by an arbitrary-shaped continuous bottom
disturbance, α(x1, t). xs and xe are the starting and ending positions of the bottom disturbance, and
Ls = xe − xs is the disturbance length, and A0 is the constant disturbance amplitude.

where A0 is the amplitude of the bottom disturbance, D(x1, t) = sech2(x1 − x0), where x0(t) =
X0+Ahsin(ωt) is the instantaneous horizontal location of the center of the disturbance, and X0 is the
initial location of the disturbance center. Ah and ω are the oscillation amplitude (in the horizontal

direction) and oscillation frequency of the disturbance, respectively. R(x1, t) = e
−(x1−x0)

2
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function, where σ = Ls
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is constant, controlling the effective length of R(x1, t).

Due to the moving bottom, spatial and time derivatives of α are specified and substituted into
Eqs.(1) and (2)

α,t = A0 × (R,tD +RD,t) , α,tt = A0 × (R,ttD + 2R,tD,t +RD,tt)

α,x1t = A0 × (R,x1tD +R,tD,x1 +R,x1D,t +RD,x1t) ,

α,x1x1t = A0 × (R,x1x1tD + 2R,x1tD,x1 + 2R,x1D,x1t +R,tD,x1x1 +R,x1x1D,t +RD,x1x1t) ,

α,x1tt = A0 × (R,x1ttD + 2R,x1tD,t + 2R,tD,x1t +R,ttD,x1 +R,x1D,tt +RD,x1tt) ,

α,x1 = A0 × (R,x1D +RD,x1) , α,x1x1 = A0 ∗ (R,x1x1D + 2R,x1D,x1 +RD,x1x1) ,

α,x1x1x1 = A0 × (R,x1x1x1D + 3R,x1x1D,x1 + 3R,x1D,x1x1 +RD,x1x1x1) .

(6)

The term α,t contributes to the right hand side of Eq. (1) while the others terms are expanded by
Eq. (2), see Chen et al. (2022).

The domain of the deformable fluid sheet is discretized into a set of mesh points and all continuous
variables are approximated by the discrete values on the mesh by using the finite difference method.
The spatial derivatives are determined by use of the second-order central difference method and the
Modified Euler Method is used for time marching.

Results and Discussion
Surface elevation time series, recorded at gauges GI, GII, GIII and GIV, whose locations are shown in
Fig. 1, are given in Fig. 2. Results are compared with those obtained by use of the CFD results obtained
by use of OpenFOAM. It is observed that clean regular waves are generated by the horizontally
oscillating bottom disturbance, and the waves keep their forms as they propagate along the tank.
Overall, results calculated by the GN model are close to those of the CFD method.

Snapshots of bottom disturbances and wave profiles at different times for different A0 values are
shown in Fig. 3. Also, Fig. 4 shows the time series of surface elevation for a range of A0 values. Shown
in Figs. 3 and 4, amplitudes of the generated waves appear to be linearly proportional to A0.

Time series of surface elevation for different Ls values are shown in Fig. 5. It is observed that wave
amplitudes vary nonlinearly with Ls. Wave amplitudes generally increase with longer Ls. However,
we find that wave amplitudes do not change remarkably with increasing Ls, when Ls ≥ 8.

Time series of surface elevation for various Ah values are shown in Fig. 6. We see that wave
amplitudes vary nonlinearly with the oscillation amplitude Ah. Wave amplitudes generated by the
disturbance increase with the increasing oscillation amplitude, but dependence of the wave amplitudes
on Ah becomes insignificant when Ah ≥ 0.8.
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Figure 2: Comparisons of surface elevation recorded at gauges GI, GII, GIII and GIV, by the GN and
CFD approaches. Ls = 4, A0 = 0.1, Ah = 0.8, T = 6, and T = 2π

ω
is the oscillation period.
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Figure 3: Snapshots of (a-d) bottom disturbances and (e-h) wave profiles at t = t0, t = t0 + T
4
,

t = t0 +
2T
4
, and , t = t0 +

3T
4
, for various geometry amplitudes A0. Ls = 4, Ah = 0.8, T = 6.
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Figure 4: Time series of surface elevation recorded at gauges GI, GII, GIII and GIV, for various
geometry amplitudes A0. Ls = 4, Ah = 0.8, T = 6.
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Figure 5: Time series of surface elevation recorded at gauges GI, GII, GIII and GIV, for various
geometry length Ls. A0 = 0.1, Ah = 0.8, T = 6.
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Figure 6: Time series of surface elevation recorded at gauges GI, GII, GIII and GIV, for a variety of
oscillation amplitudes Ah. Ls = 4, A0 = 0.1, T = 6.

Time series of surface elevation for different T values are shown in Fig. 7. It is shown that wave
amplitudes are nearly invariant with T . Wave peak values of T = 6 are slightly larger than that of
T = 5 and T = 7 while wave trough values of T = 6 are much closer to the other two cases.
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Figure 7: Time series of surface elevation recorded at gauges GI, GII, GIII and GIV, for a variety of
oscillation periods T . Ls = 4, A0 = 0.1, Ah = 0.8.
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