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Highlights

• Investigation of flexural-gravity wave blocking dynamics in three-layer fluid in case of finite ocean depth.
• The dispersion relation reveals that wave blocking occurs either in the surface mode or in one of the

internal modes.
• The energy balance relation is established for flexural-gravity wave scattering due to a crack in a floating

ice sheet in the perspective of wave blocking.

1. Introduction

There is an upsurge in interest in the utilization of ocean space by developing very large floating structures to
account for ocean space utilization. These floating structures can be used as an alternative to land reclamation.
Besides, there is an interest in the development of multipurpose facilities in the context of an exclusive economic
zone for promoting the Blue Economy ([1]). As a result, there is a growing interest in the hydroelastic analysis
of very large floating structures for estimating the hydrodynamic performance of these structures under wave
action. A parallel branch of study which is analogous to wave interaction with this kind of floating structure
is the wave-ice interaction problems in the polar region. In both cases, the structure is modelled as a thin
elastic plate. Surface gravity waves interact with these floating structures in generating flexural gravity waves.
In extreme events such as high currents and wind, flexural gravity blocking occurs in the presence of high
compressive force. There is a growing interest in recent years in the analysis of wave-structure interaction
problems in the context of wave blocking (see [2]). The ocean exhibits density stratification due to changes
in temperature and salinity along water depth. Typically, the sharp change in density leads to the generation
of internal waves. These internal waves are noticed at various locations in the ocean, such as the Celtic Sea
([3]) and Andaman & Nicobar islands ([4]). Woodson [5] reviewed the impact of internal waves in nearshore
ecosystems. In the present study, an attempt has been made to investigate flexural gravity wave blocking
in a three-layer fluid having a plate-covered surface and two interfaces, assuming that the stratified ocean is
modelled as a three-layer fluid of different densities.

2. Mathematical formulation

Figure 1: Floating ice sheet having a crack in a three-
layer fluid.

Flexural-gravity wave scattering due to a straight line
crack in a floating ice sheet is analyzed in the pres-
ence of lateral compressive force in a three-layer fluid
of finite depth. The physical problem is demonstrated
under the assumption of linear water wave theory and
the small amplitude structural response of the float-
ing ice sheet. Here, two semi-infinite floating ice
sheets are separated by a linear crack at (0, 0) (see
Figure 1) and the ice sheets are modelled as thin
elastic plates. The physical problem is considered
in the two-dimensional Cartesian coordinate system
with x−axis being in the horizontal direction and the
y−axis being in the vertical downward positive di-
rection. The upper-layer fluid of constant density ρ1 occupies the region −∞ < x < ∞, 0 < y < h1, with
y = 0 being the mean ice-covered surface. The middle-layer fluid of constant density ρ2(> ρ1) occupies



the region −∞ < x < ∞, h1 < y < h2, with y = h2 being the upper interface. The lower-layer fluid of
density ρ3(> ρ2 >, ρ1) occupies the region −∞ < x < ∞, h2 < y < h3 with the lower interface being
at y = h3. The fluid is assumed to be inviscid and incompressible, and the flow is irrotational and simple
harmonic in time with angular frequency ω which ensures the existence of a velocity potential Φ(x, y, t) of the
form Φ(x, y, t) = Re{ϕ(x, y)e−iωt}. Besides, the ice sheet deflection and interface elevations are of the forms
ζj(x, t) = Re

{
ηj(x)e

−iωt
}

for j = 1, 2, 3. Thus, the spatial velocity potential ϕ(x, y) satisfies the partial
differential equation

∇2ϕ = 0 in the fluid regions. (1)

Further, the linearized kinematic boundary conditions at the ice-covered surface and interfaces are of the form

η(x) =
i

ω

∂ϕ(x, y)

∂y
, (2)

with η(x) being one of the ηj(x) as appropriate. Besides, the boundary condition on the ice-covered surface is
given by [6](

D
∂4

∂x4
+Q

∂2

∂x2
+ 1

)
∂ϕ(x, y)

∂y
+Kϕ(x, y) = 0 on y = 0, x ∈ (−∞, ∞) \ {0}, (3)

where D = EI/(ρ1g − dρpω
2), Q = N/(ρ1g − dρpω

2), K = ρ1ω
2/(ρ1g − dρpω

2), EI = Ed3/12(1− ν2),
E is Young’s modulus, d is plate thickness, ρp is plate density, ν is Poisson’s ratio and N is the uniform
compressive stress. The interface boundary conditions at the mean interfaces are given by

∂ϕ(x, y−)

∂y
=

∂ϕ(x, y+)

∂y
on y = hj , for j = 1, 2, (4a)

sj

{
∂ϕ(x, y−)

∂y
+Kϕ(x, y−)

}
=

∂ϕ(x, y+)

∂y
+Kϕ(x, y+) on y = hj , for j = 1, 2, (4b)

with sj = ρj/ρj+1(< 1) for j = 1, 2. Finally, the impermeable rigid bottom boundary condition is given by

∂ϕ(x, y)

∂y
= 0 on y = h3. (5)

Moreover, the continuity of velocity and pressure along the interface near the crack yield

ϕx(0+, y) = ϕx(0−, y) and ϕ(0+, y) = ϕ(0−, y) for 0 < y < h3. (6)

Further, assuming the free-edge conditions (zero bending moment and shear stress) have complied near the
crack, the edge conditions in terms of the velocity potential ϕ(x, y) satisfies

∂2

∂x2

(
∂ϕ

∂y

)
= 0 and D

∂3

∂x3

(
∂ϕ

∂y

)
+Q

∂2ϕ

∂x∂y
= 0 as (x, y) −→ (0±, 0). (7)

Finally, the far-field radiation condition is of the form

ϕ(x, y) =


5∑

n=1

(
Ine

−iϵnknx +Rne
iϵnknx

)
Fn(y) as x −→ ∞,

5∑
n=1

Tne
−iϵnknxFn(y) as x −→ −∞,

(8)

where kn for n = 1, 2, 3 are the propagating wave modes associated with the ice-covered surface within
the blocking frequency under the assumption that blocking occurs on the ice-covered surface mode, whilst
k4 and k5 correspond to the propagating wave modes in the upper and lower interfaces respectively. On the
other hand, outside the blocking frequency, the propagating wave modes kn for n = 1, 4, 5 are associated
with the ice-covered surface, upper and lower interfaces respectively, whilst kn for n = 2, 3 contribute to the
non-propagating wave modes, and thus Ij , Rj and Tj are considered to be zero for j = 2, 3. Further, Ins,
Rns and Tns are the amplitudes of the incident, reflected and transmitted waves in the nth mode respectively.
Moreover, the incident wave amplitudes In are assumed to be known and chosen suitably taking into account the



direction of wave propagation within the blocking frequencies as in [6], whereas the reflected and transmitted
wave amplitudes are unknown complex constants and to be determined using boundary conditions along the
vertical interfaces and the edge conditions near the crack. Besides, ϵn = ±1 depends upon the group velocity
cg(kn) ≷ 0. Further, kns in k satisfy the dispersion relation as given by

G(k) ≡ k − s1k − s1K
(Dk4 −Qk2 + 1− γK)k −K tanh kh

(Dk4 −Qk2 + 1− γK)k tanh kh−K

−K
s2K tanh kh32 tanhhh21 + {K − (1− s1)k tanh kh32}
s2K tanh kh32 + {K − (1− s1)k tanh kh32} tanh kh21

= 0, (9)

with hij = hi − hj for i = j + 1, j = 1, 2. Moreover, the vertical eigenfunctions Fn(y)s are of the forms

Fn(y) =


l1n(y) for 0 < y < h1,

l2n(y) for h1 < y < h2,

s2K cosh kn(h3 − y) for h2 < y < h3,

(10)

with

l1n(y) = −P (kn)

T (kn)

{
(Dk4n −Qk2n + 1)kn cosh kny −K sinh kny

}
,

l2n(y) = s2K sinh knh32 sinh kn(h2 − y) +M(kn) cosh kn(h2 − y),

M(kn) = K cosh knh32 − (1− s2)kn sinh knh32, P (kn) = M(kn) sinh knh21 + s2K sinh knh32 cosh knh21,

T (kn) = (Dk4n −Qk2n + 1)kn cosh knh1 −K sinh knh1.

3. Wave blocking in three-layer
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Figure 2: Dispersion graph demonstrates the occurrence of blocking for
different values of lateral compressive force Q.

The physical parameter values used
for the numerical computations are
Young’s modulus E = 5 GPa, Pois-
son’s ratio ν = 0.3, ice density
ρp = 922.5 kg m−3, ice thickness
d = 1 m, acceleration due to grav-
ity g = 9.81 m sec−2, density ratios
are s1 = 0.85, s2 = 0.80 and water
depths are h1 = 10 m, h2 = 20 m,
h3 = 50 m, which are the same as
in [6]. In addition, inertia term in-
volving γω2 << 1 is neglected as
in [2]. The dispersion curves given
in Eq. (9) are shown in figure 2 for
various values of compressive force
Q. The figure reveals the nature of the dispersion curve in the plane of ω-k, which is monotonically growing
for the uncompressed ice. With an increase in compressive force, local extrema occur in the dispersion graph,
which is associated with lower/higher wavenumber. The maxima and minima in wave frequency are referred
to as primary and secondary blocking frequencies respectively, as in [2]. Further, the slope of the k − ω curve
vanishes at the blocking frequency, which is equivalent to the cessation of energy propagation. Moreover, it
has been noticed that wave blocking may occur in either of the modes for certain values of the frequency with
fixed compressive force. Further, the dispersion curve can have a maximum of five distinct real roots within the
limit of blocking frequencies, of which three exist either in the ice-covered surface, upper or lower interface
modes, where wave blocking occurs. The blocking frequency shift to a lower frequency as compressive force
increases.



4. Energy balance relation

To establish the energy balance relation, using Green’s integral theorem, as given by∫
C

(
ϕ∗∂ϕ

∂n
− ϕ

∂ϕ∗

∂n

)
ds = 0, (11)

where C denotes the closed boundary of the three-layer fluid region represented as the union of two closed
boundaries C1 and C2, ϕ∗ is the complex conjugate of ϕ which satisfies Eqs. (1)-(7) and ∂

∂n represents the
outward normal derivative to the closed boundary C. While the closed boundary C1 consists of the horizontal
ice-covered surface (0 < x < X; y = 0), the vertical boundary (0 < y < ∞; x = X), the bottom boundary
(0 < x < X; y = h3), and the vertical boundary at the crack (0 < y < h3; x = 0), the closed boundary C2

consists of the horizontal upper surface (−X < x < 0; y = 0), the vertical boundary (0 < y < h3; x = −X),
the bottom boundary (−X < x < 0; y = h3), and the vertical boundary at the crack (0 < y < h3; x = 0).
Consequently, using Eqs. (3)-(8), the energy balance relation is obtained as

Ji|Ii|2
{(

K
(i)
r1

)2
+
(
K

(i)
t1

)2
− 1

}
+

5∑
m=4

Jm|Im|2
(
K2

rm +K2
tm − 1

)
= 0 for i = 1, 2, (12)

where K
(i)
r1 =

√√√√ 3∑
j=1

ϵjEij
∣∣∣∣Rj

Ii

∣∣∣∣2, K
(i)
t1 =

√√√√ 3∑
j=1

ϵjEij
∣∣∣∣Tj

Ii

∣∣∣∣2 for i = 1, 2,

Krm =

∣∣∣∣Rm

Im

∣∣∣∣ , Ktm =

∣∣∣∣Tm

Im

∣∣∣∣ for m = 4, 5, Eij =
Jj
Ji

for j = 1, 2, 3,

Jn = kn

[{
P (kn)

T (kn)
Kkn

}2
(
2Dk2n −Q

)
K

+ Ln

]
for n = 1, 2, ..., 5,

Ln = s1s2

∫ h1

0
F 2
n(y)dy + s2

∫ h2

h1

F 2
n(y)dy +

∫ h3

h2

F 2
n(y)dy for n = 1, 2, ..., 5.

Here, K(i)
r1 and K

(i)
t1 denote the generalized reflection and transmission coefficients with the incident wave

being in the ith mode with blocking occurring in the ice-covered surface mode. Besides, Krm and Ktm are
the reflection and transmission coefficients associated with the upper (m = 4) and lower (m = 5) interfaces,
respectively. Similarly, the energy balance relation can be obtained when wave blocking occurs either at the
upper or lower interfaces. Few results regarding the crack problem from the perspective of energy balance
relation will be demonstrated during the presentation.
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