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HIGHLIGHTS
A generalized form of one-dimensional Filon quadrature is presented along with a few simple
examples. One practical use case involves conversion between frequency- and time-domain
radiation coefficients in ship seakeeping. A second example is Michell’s wave resistance
formula.

1 Filon Quadrature in One Dimension
Our primary focus is the numerical integration of highly oscillatory functions, though more
generally an integral of the form

I =

∫
f(x)g(x)dx (1)

where f(x) is some discretized function and g(x) is a well-defined, continuous function. The
functions can be multivariate, though we first focus on one-dimensional integrals.

We assume the function f(x) is piecewise linear over some range, i.e.,

f(x) = fj +
x− xj

h
(fj+1 − fj) for xj ≤ x ≤ xj+1 (2)

where fj = f(xj) and h = xj+1 − xj is the step size. The integral over this range is

Ij =

∫ xj+1

xj

f(x)g(x)dx = fj+1g
′
j+1 − fjg

′
j −

fj+1 − fj
h

[
g′′j+1 − g′′j

]
(3)

where shorthand g′(x) =
∫
g(x)dx and g′′(x) =

∫
g′(x)dx has been used. The expression in

Eqn. 3 can be used directly in a numerical integration scheme. The solution is exact if f(x)
is actually piecewise linear, though more generally we can apply this for discretized f(x).
There are practical issues, for example if the first or second integrals of g(x) are singular or
otherwise not well-defined.

1.1 Constant Integral g(x) = 1
We begin with a simple case with constant g(x) = 1. Substituting the above expression in
Eqn. 3 gives the familiar trapezoidal rule

Ij =
h

2
(fj + fj+1) (4)

Assuming integration limits of 0..Nh with constant spacing h over the intervals gives total
integral I with coefficients reducing to a constant spacing trapezoidal scheme.

I =
N∑
j=0

Ij = h

N∑
j=0

Cjf(jh) with Cj =

{
1
2

for j = 0, j = N

1 for 0 < j < N



1.2 Fourier Integral g(x) = eiωx

The work done on integrating highly oscillatory functions has direct application to Fourier-
type integrals, going back to the work of Filon [1]. Using the continuous function g(x) = eiωx

in Eqn. 3 and recalling that eiωxj+1 = eiωxjeiωh, we get

Ij =
1

ω2h

[
fje

iωxj
(
1− eiωh + iωh

)
+ fj+1e

iωxj+1
(
1− e−iωh − iωh

)]
(5)

If we assume the spacing h is constant over all the intervals in the integral, the total
integral over the range −Nh..Nh can be written as

I = h

N∑
j=−N

Cje
iωjhf(jh) with Cj =


1

ω2h2 (1− eiωh + iωh) for j = −N
1

ω2h2 (2− eiωh − e−iωh) for j ̸= ±N
1

ω2h2 (1− e−iωh − iωh) for j = +N

resulting in an weighting coefficients equivalent to those found in [2]. A series expansion
shows that the weighting coefficients approach their trapezoidal equivalent as ωh → 0.

1.3 Exponential Integral g(x) = ekx

An exponential function is another example that can numerically integrated using this ap-
proach. Though it is not oscillatory, some areas of high curvature can lead to errors when
using simple trapezoidal integration schemes. Substituting g(x) = ekx into Eqn. 3 and using
ekxj+1 = ekxjekh where h = xj+1 − xj gives

Ij =
1

k2h

[
fje

kxj
(
−kh− 1 + ekh

)
+ fj+1e

kxj+1
(
kh− 1 + e−kh

)]
(6)

Following the same approach as before, assuming the spacing h is constant over the
integration limits 0..Nh yields the total integral

I = h
N∑
j=0

Cje
kjhf(jh) with Cj =


1

k2h2 (e
kh − kh− 1) for j = 0

1
k2h2 (e

kh + e−kh − 2) for 0 < j < N
1

k2h2 (e
−kh + kh− 1) for j = N

which is equivalent to the form given in [3]. Again, the coefficients tend to trapezoidal terms
in the limit of kh → 0.

2 Impulse Response Functions for Wave Radiation
Classical ship seakeeping involves a linear system of equations in the frequency domain.
Converting to time-domain impulse response functions (IRFs) is well known in the widely
cited work of Cummins [4]. A form of the Cummins equation is shown below, using the
frequency-domain damping B(ω) as the source data, which is a good candidate for Filon-
trapezoidal integration.

K(t) =
2

π

∫ ∞

0

(B(ω)−B∞)cos(ωt)dω (7)

f(ω) = B(ω)−B∞ g(ω) = cos(ωt) (8)



Consider an example where the kernel and corresponding damping are analytically defined

K(t) = e−0.2t cos(0.6t) and B(ω) =
2 + 5ω2

(2− 6ω + 5ω2)(2 + 6ω + 5ω2)
(9)

Figure 1: IRF computation with different frequency discretizations

The upper left of Figure 1 shows three different discretization schemes for the damp-
ing curve. Each set is used to numerically compute the IRF, as shown in the remaining
sub-figures. The fine resolution shows very good accuracy for both trapezoidal and Filon in-
tegration, while using a coarse spacing gives very poor results with the trapezoidal approach.
The variable resolution, i.e., finely resolved peak and otherwise coarse, also shows the Filon
approach to have better accuracy.

The analytic case given here confirms that the Filon-trapezoidal integration is an im-
provement over the simple trapezoidal approach when numerically computing IRFs from
wave radiation coefficients. The ability to accurately handle variable spacing should not be
under-appreciated - many modern seakeeping panel codes take significant computational ef-
fort to achieve good quality results, so using a suitable integration scheme for time/frequency
domain conversion is valuable. For example, we may want to focus computational effort to
resolve peak responses and use fewer points to resolve the high-frequency tail.

3 Michell’s Wave Resistance
One useful application of this integration scheme (and source of inspiration for this manuscript)
is the evaluation of Michell’s wave resistance formula [5]. The derivation of the integral can



be found in Chapter 5 of [6]. One of the expressions that must be evaluated is the complex-
valued free-wave spectrum A(θ), given by

A(θ) = −i
2

π
k2
0 sec

4 θ

∫∫
Y (x, z)ek0z sec

2 θeik0x sec θdxdz (10)

where k0 = g/U2 and the double integral is evaluated on the center-plane.
The wave elevation at any point in the downstream far field is given by

ζ(x, y) = ℜ
∫ π/2

−π/2

A(θ) exp−ik(θ)(x cos θ+y sin θ) dθ (11)

and the total energy in the steady wave pattern is

R =
π

2
ρU2

∫ π/2

−π/2

|A(θ)|2 cos3 θdθ (12)

Following the conventions in [3] and [6], we define the double integral terms of the free-
wave spectrum by

A(θ) = −i
2

π
k2
0 sec

4 θ(P (θ) + iQ(θ)) (13)

P (θ) + iQ(θ) =

∫
F (x, θ)eik0x sec θdx with F (x, θ) =

∫
Y (x, z)ek0z sec

2 θdz (14)

where k(θ) = k0 sec
2 θ. The center-plane integral in Eqn. 10 has been replaced by two

line integrals in Eqn. 14, suitable for integration using the one-dimensional Filon quadra-
ture schemes presented earlier. The wave elevation and wave resistance can be numerically
integrated using the one-dimensional Filon quadrature formulation.
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