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1 Introduction

Our objective is to present preliminary calculations using a new formulation for the wave added
resistance recently derived by Kashiwagi [1]. This method is based on far-field momentum
conservation with the far-field integrals moved to the body using Green’s second identity. An
incomplete form of this formulation with body-surface integrals has existed for many years, but
the complete version was first given by [1], where it is also shown to be equivalent to the time
average of the Lagally theorem. We compare calculations using the new method with near-field
pressure integration and Maruo’s far-field method using both strip theory and three-dimensional
(3D) potential-flow models.

2 Background, Theory, and Results

Traditionally, in the far-field method, the Transport Theorem is used to write an equation for
the average rate of change of fluid momentum inside a closed volume. Then the mean drift force
is expressed in terms of an integral over a far-field control surface S∞. One way of treating this
far-field integral is to employ the Kochin function to be evaluated by an integral over the body
surface, and to compute the drift force using Maruo’s formulation. At the previous workshop,
we presented some numerical challenges related to this approach of computing added resistance
for floating bodies. Another way of treating this far-field integral is to apply Green’s second
identity to transfer the drift force integrals to the wetted-body surface Sb. This approach was
employed by Newman for the vertical mean drift force in [2]. Based on his derivation we can
derive a formulation for the horizontal drift force as

Rw = Fx = −ρ

2
ℜ
{∫

Sb

[ϕBϕ
∗
0nx − ϕBn ϕ

∗
0x] ds

}
− ρ

4
ℜ
{∫

Sb

[ϕBϕ
∗
Bnx − ϕBn ϕ

∗
Bx] ds

}
. (2.1)

Here ρ is the fluid density, ϕB is the combined radiation and scattering velocity potential and ϕ0

is the incident wave potential, all in the frequency domain. The subscript n denotes a derivative
normal to the body surface, and subscript x denotes the x-derivative. The asterisks indicate
the complex conjugate and ℜ takes the real part. In (2.1) we denote the first integral by Fϕ0

and the second integral by FϕB
. In his well-known paper [3], Salvesen applied (2.1) to derive

a formulation for the added resistance inside Salvesen, Tuck and Faltinsen (STF) strip theory.
Based on the weak-scatterer assumption, he neglected the second integral in (2.1). Invoking the
long-wave assumption, he then converted the first 3D body integral in (2.1), Fϕ0 , to 2D sectional
and line integrals along the ship length. In a recent paper [4] we have shown that the prediction
of added resistance using strip theory and equation (2.1) can be remarkably improved if none
of the above-mentioned assumptions are employed in computing the 2D sectional integrals.
We have reproduced part of the results of that research in Fig. 1. The results are for the
Modified Wigley hull (Fr = 0, F r = 0.1), and the RIOS bulk carrier (Fr = 0.18). The results
are compared to measurements and Enhanced Unified Theory (EUT) [5]. As can be seen, a
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complete evaluation of (2.1) inside STF strip theory leads to considerably more accurate results
in comparison with the classical formulation by Salvesen.

Motivated by the improved results using the strip theory, we have implemented equation
(2.1) inside our in-house 3D finite-difference potential-flow solver (OW3D-Seakeeping), and
calculated the mean drift force for several closed form and ship geometries. The computations
are for freely-floating bodies at zero speed and for fixed submerged bodies at both zero and
non-zero forward speed, see Fig. 2. The mean drift force calculations are also compared with
the classical far-field and the near-field methods. Note also that two of the computations show
the vertical mean drift force Fz on the submerged spheroid both with and without forward
speed. From these plots, an impressive agreement can be observed between the results from
equation (2.1) and the results based on the classical near-field or far-field methods. To illustrate
the errors associated with the weak-scatterer assumption, we have added two examples in which
only Fϕ0 is considered for the computation. Similar findings in 3D were reported in (2009) by
Tsubogo [6], though only for closed-form geometries at zero-speed.
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Figure 1: Added resistance computed using equation (2.1) using STF strip theory.
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Figure 2: Mean drift force computed using equation (2.1) using a 3D potential-flow solver.



Eq. (2.1) is however, incomplete for floating bodies with non-zero forward speed, which can
be seen through the following sketch of the complete derivation from [1]. As noted above, in
the far-field method the mean drift force is expressed in terms of far-field integrals over S∞ as

Fx = ρ

∫
S∞

(
Φt +

1

2
∇Φ · ∇Φ+ gz

)
nxds− ρ

∫
S∞

ΦxΦnds. (2.2)

where Φ is the total velocity potential (including incident, radiation and scattering waves) in the
time domain. Differentiation with respect to time is denoted by a subscript t and the over-bar
indicates the average over one wave period. Since the mean drift force is second order, equation
(2.2) can be collected into two integrals: an integral of the zeroth- and the first-order pressure
terms over z ∈ [0 ζ], and an integral of the second-order pressure terms over z ∈ [−∞ 0] as

Fx = ρ

∫
S∞

(
1

2
∇Φ · ∇Φnx − ΦxΦn

)
ds+ ρ

∫ ζ

0

∫
C∞

(Φt + gz)nx dz dl = I1 + I2. (2.3)

Here ζ(t) = − (Φt − UΦx) /g = −ℜ
{
(iωe − UΦx)ϕ eiωet

}
/g is the instantaneous free-surface

elevation with ωe the encounter frequency, and U the forward speed. C∞ is the waterline at the
far-field surface. For brevity, the integral over [−∞ 0] is denoted by S∞. Note that for example
Φ1Φ2 = ℜ (ϕ1ϕ

∗
2) /2 = ℜ (ϕ∗

1ϕ2) /2. Defining A =
(
0,−ϕϕ∗

z, ϕϕ
∗
y

)
it can be shown that∫

S∞

n · (∇×A) ds = −
∫
C∞

A · dr =

∫
C∞

ϕϕ∗
zdy. (2.4)

1

2
∇ϕ · ∇ϕ∗ nx − ϕxϕ

∗
n =

1

2
n · (∇×A) +

1

2
[ϕϕ∗

nx − ϕ∗
nϕx] . (2.5)

I1 =
ρ

4
ℜ
{∫

S∞

[ϕϕ∗
nx − ϕ∗

nϕx] ds

}
+

ρ

4
ℜ
{∫

S∞

n · (∇×A) ds

}
. (2.6)

For the Neumann-Kelvin linearization, ϕz = νϕ+2iτϕx −ϕxx/K0 and invoking Green’s second
identity, the first far-field integral in (2.6) can be converted to a body integral over Sb, and
two waterline integrals. One of them over the body Cb and the other over the far-field C∞ as
follows.

ρ

4
ℜ
{∫

S∞

[ϕϕ∗
nx − ϕn ϕ

∗
x] ds

}
= −ρ

4
ℜ
{∫

Sf

+

∫
Sb

[ϕϕ∗
nx − ϕn ϕ

∗
x] ds

}
. (2.7)

−ρ

4
ℜ
{∫

Sf

[ϕϕ∗
zx − ϕz ϕ

∗
x] dx dy

}
= −ρ

4
ℜ
{∫

C∞

[−2iτϕ ϕ∗
x + (ϕx ϕ

∗
x − ϕϕ∗

xx) /K0]nx dl

}
−ρ

4
ℜ
{∫

Cb

[−2iτϕ ϕ∗
x + (ϕx ϕ

∗
x − ϕϕ∗

xx) /K0]nx dl

}
. (2.8)

Here ν = ω2
e/g, τ = Uωe/g,K0 = g/U2. Note that for U = 0, no integral over the free-surface

Sf appears after invoking Green’s second identity in the first integral of (2.6). This integral
over Sf was in fact missing from all previous derivations of (2.1). The second integral in (2.3)
can be evaluated as

I2 = −ρg

2

∫
C∞

ζ2 nx dl + ρU

∫
C∞

ζΦxnx dl = −ρ

4
ℜ
{∫

C∞

(νϕϕ∗ − ϕx ϕ
∗
x/K0)nx dl

}
. (2.9)

Using the identity in (2.4), it can be shown that the combination of the second integral in (2.6)
and the line integral in (2.9) cancels the C∞ waterline integral in equation (2.8). Therefore the
mean drift force can be computed using only near-field integrals as

Fx = −ρ

4
ℜ
{∫

Sb

[ϕϕ∗
nx − ϕn ϕ

∗
x] ds

}
+

ρ

4
ℜ
{∫

Cb

[2iτϕ ϕ∗
x − (ϕx ϕ

∗
x − ϕϕ∗

xx) /K0]nx dl

}
. (2.10)



If we decompose the total velocity potential ϕ into its components, then it is possible to verify
that the first integral in (2.10) is in reality identical to (2.1). Now it should be clear why (2.1)
cannot be applied to calculate the mean drift force for floating bodies with forward speed.

At this point, it has not been possible for us to show convergence of the computation for
the waterline integral in (2.10), and thus we have not been able to show agreement with the
near-field method for floating bodies with forward speed. It is also important to mention that,
as shown in [1], a similar formulation for the added resistance also exists for the double-body
flow linearization. However, in this case instead of the waterline integral in (2.10), an integral
of the steady and unsteady potentials should be evaluated over the free surface Sf . Due to the
rapidly decaying behavior of the double-body flow potential away from the body, this surface
integral appears to be tractable but we have not yet attempted to evaluate it.

3 Conclusions

We have introduced calculations using a new formulation for wave added resistance. The efficacy
of this formulation has been demonstrated by comparison with classical near-field and far-field
methods. For floating bodies with forward speed, further computations are required to show
convergence of the waterline integral in (2.10), or its counterpart free-surface integral in case of
a double-body linearization.

Acknowledgment

Financial support provided by Den Danske Maritime Fond and Orient’s Fond are highly appre-
ciated.

References

[1] M. Kashiwagi, “A New Computation Method for Added Resistance and Connection with
Lagally’s Theorem,” The Japan Society of Naval Architects and Ocean Engineers, no. 2022A-
OS4-5, pp. 253–259, November 2022.

[2] J. N. Newman, “The Second-order Time-average Vertical Force and Moment on a Sub-
merged Slender Body Moving Beneath a Regular Wave System,” Tech. Rep. 170, Naval
Ship Research and Development Center, Washington, D.C. 20034, May 1970.

[3] N. Salvesen, “Second-order Steady State Forces and Moments on Surface Ships in Oblique
Regular Waves,” in International Symposium on Dynamics of Marine Vehicles and Struc-
tures in Waves, Paper, vol. 22, 1974.

[4] M. Amini-Afshar, “Salvesen’s Method for Added Resistance Revisited,” Journal of Offshore
Mechanics and Arctic Engineering, vol. 143, no. 5, p. 051902, 2021.

[5] M. Kashiwagi, “Added Resistance, Wave-induced Steady Sway Force and Yaw Moment on
an Advancing Ship,” Ship Technology Research (Schiffstechnik), vol. 39, no. 1, pp. 3–16,
1992.

[6] T. Tsubogo, “The Reciprocal Form of Mean Wave Drift Force and Yaw Moment,” in
Proceedings of 9th International Offshore and Polar Engineering Conference. Osaka, Japan,
2009.


	Introduction
	Background, Theory, and Results
	Conclusions

