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1 Introduction
The condition of waves generated by a ship in steady motion in finite depth water varies with the ship’s speed
U . The depth Froude number Fr = U√

gh
(where g is the acceleration of gravity and h is the water depth) is

widely adopted to measure the velocity. If a ship moves with a subcritical speed (Fr < 1) in water with a
flat bottom, a wave wake and a depression along the ship are formed. The phenomenon called ‘squat’ happens
when the depth is shallow (Tuck, 1966). Under the near-critical and supercritical conditions, nonlinear effects
can not be ignored. Ertekin et al. (1984) found a series of solitons in the experiment when Fr > 1. The solitons
begin to break at Fr = 1.2 and are replaced by a hydraulic jump at Fr = 1.3. Chen & Sharma (1995) used a
Kadomtsev-Petviashvili equation to investigate a slender ship moving in a shallow channel. As for Fr = 0.9,
1.0, 1.1, they obtained similar results with Ertekin et al. (1984). In addition, they also considered the influence
of the channel width on the amplitude of solitons and the period of the first two solitons. Wu (1987) explained
the basic mechanism of the formation of upstream solitons and studied the nonlinear stability based on the
forced Korteweg-de Vries equation. Li & Sclavounos (2002) investigated the three-dimensional nonlinear waves
generated by a ship traveling at different speeds in an unbounded domain. The parabolic crestline of solitons
is shown in shallow water and parabolic water humps are formed when Fr > 1.2.

Recently, different from the nonlinear solitons mentioned above, a new type of upstream wave named ‘mini-
tsunami’ was observed in Norway (Grue, 2017). Mini-tsunamis are generated when large ships travel across a
shallow depth variation with subcritical speed. These ship-induced upstream waves can cause erosion, and it is
worth investigating them.

Because the amplitude and wavelength of mini-tsunamis are 2 m and 100 m, respectively, linear free-surface
boundary conditions were used by Grue (2017). The ship was modelled by a moving pressure distribution. He
studied the influence of channel width and the ship’s velocity on the amplitude of mini-tsunamis. Later, he
developed a model for a real ship geometry and explained the generation process of mini-tsunamis (Grue, 2020).
The results showed that the differences between the calculations for a real ship geometry and those for a pressure
distribution are not obvious.

The slope of a mini-tsunamis, which is defined as the ratio between the height and the length, is in the linear
regime, so linear free-surface boundary conditions were used in two papers of Grue. However, the nonlinear
effects have not been studied and the importance of nonlinearity is still unclear. With this motivation, we
used a High-Order Spectral (HOS) method and a Boussinesq model, FUNWAVE-TVD, to model the nonlinear
evolution of the free surface over a variable bottom. Comparing the results of the HOS model, FUNWAVE-
TVD and Grue’s method, we can examine the nonlinear effects in different conditions where the ship’s draft
and velocity are the main variables.

2 Fully nonlinear numerical models
2.1 HOS model with variable bathymetry (HOS-VB)

A potential flow formalism is used and the flow can be described by a velocity potential ϕ (Gouin et al., 2017).
The two horizontal axes are x and y, and the horizontal computational domain can be defined as Lx ×Ly. The
vertical axis z points upwards and the mean water level is at z = 0. Based on the potential flow assumption, the
governing equation is the Laplace equation: ∇ϕ = 0. The surface potential ϕS(x, y, z, t) = ϕ(x, y, η(x, y, t), t) is
introduced here, then the nonlinear free-surface boundary conditions are

ηt +∇1ϕ
S · ∇1η − (1 +∇1η · ∇1η)ϕz(x, y, η, t) = 0, at z = η (1)

ϕS
t + gη +

1

2
∇1ϕ

S · ∇1ϕ
S − 1

2
(1 +∇1η · ∇1η)ϕ

2
z(x, y, η, t) = −p

ρ
, at z = η (2)

where ∇1 = ( ∂
∂x ,

∂
∂y ), η is the free-surface elevation, ρ, g and p are the water density, gravitational acceleration

and ship pressure distribution, respectively. The total depth −h = −h0+β(x, y) where h0 is the average bottom
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and β is the bottom variation. The bottom boundary condition reads

∇1ϕ · ∇1β − ϕz(x, y,−h0 + β) = 0, at z = −h0 + β. (3)

The computational domain is periodic in the x and y directions, which can be expessed by :

(ϕ; η)(x = 0, y, z, t) = (ϕ; η)(x = Lx, y, z, t), (4)

(ϕ; η)(x, y = 0, z, t) = (ϕ; η)(x = x, Ly, z, t), (5)

If the vertical velocity on the free surface, ϕz(x, y, η), can be solved, the time stepping of ϕ and η can be
continued based on Eqns. (1) and (2).

In order to calculate ϕz, we use a truncated power series to express the potential, ϕ =
∑M

m=1 ϕ
(m).

Then we define ϕ(m) = ϕ
(m)
h0

+ ϕ
(m)
β , where ϕ

(m)
h0

satisfies the flat bottom (z = −h0) boundary condition:

∂ϕ
(m)
h0

∂z (x, y,−h0, t) = 0, while ϕ
(m)
β still satisfies Eqn. (3). Therefore, ϕ

(m)
h0

and ϕ
(m)
β can be expressed as:

ϕ
(m)
h0

=
∑
p

∑
q

A(m)
pq (t)

cosh(kpq(z + h0))

cosh(kpqh0)
eikxpx+ikyqy (6)

ϕ
(m)
β =

∑
p

∑
q

B(m)
pq (t)

sinh(kpqz)

cosh(kpqh0)
eikxpx+ikyqy, (7)

where kxp = p 2π
Lx

, kyq = q 2π
Ly

and kpq = |(kxp, kyq)|. Then the modal amplitudes A
(m)
pq (t) and B

(m)
pq (t) can be

solved by a Fast Fourier Transform. More specifically, B
(m)
pq (t), which is a function of A

(m)
pq (t), can be computed

by the following method:
We assume β

h0
≪ 1, O( β

h0
) ≡ O(∂β∂x ) ≡ O(∂β∂y ), then the bottom condition in Eqn. (3) can be expressed by

a Taylor expansion. The Taylor series of the free surface and the variable bottom are truncated at different

orders. More specifically, M for the free surface and Mb for the variable bottom. Therefore, ϕ
(m)
β =

∑Mb

l=1 ϕ
(m,l)
β .

If we keep terms in Eqn. (3) at the same order, we have[
∂ϕ
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β
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]
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(8)

B
(m)
pq (t) can be solved by Eqn. (8).

2.2 FUNWAVE-TVD

The open-source FUNWAVE-TVD solver is based on a fully nonlinear Boussineq model (Chen et al., 2000).
The moving pressure distributions in the FUNWAVE-TVD and HOS model are the same and defined as:

p(x, y, t) = ρgTf(x, t)q(y, t). (9)

f(x, t) =

{
cos2[

π(|x−x∗(t)|− 1
2αL)

(1−αL) ] 1
2αL ≤ |x− x∗(t)| ≤ 1

2L

1 |x− x∗(t)| ≤ 1
2αL

(10)

q(y, t) =

{
cos2[

π(|y−y∗(t)|− 1
2βB)

(1−βB) ] 1
2βB ≤ |y − y∗(t)| ≤ 1

2B

1 |y − y∗(t)| ≤ 1
2βB

(11)

where L,B, T are the ship’s length, width and draft, respectively. The center position of the ship is (x∗, y∗). α
and β are the coefficients which control the shape of the draft region in x and y directions, respectively.

3 Results and discussion
Numerical simulations are performed by the two fully nonlinear models and the linear model in Grue (2017).
Following the information of Color Fantasy which is the ship documented by Grue (2017), we use a small-scale
model to simulate it. The results may be as a reference for the future experiments. In all simulations, the ship’s
length is L = 2 m and its beam is B = 0.5 m. The steady velocity of the ship is defined as U0, and a start-up
process is imposed at the initial moment: U = U0 sin(t/T0) for 0 ≤ t ≤ πT0

2 where T0 = 30
√
h1/g and h1 = 0.3.

The computational domain is Lx×Ly = 307.2 m × 2 m and the total number of nodes is Nx×Ny = 8192×128.
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Figure 1: The upstream wave elevation induced by the start-up process on a flat bottom as recorded by the
probes in different computations. U0 = 1.3 m/s, h = 0.45 m, Fr = U0/

√
gh = 0.62, h

T = 4.5.
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Figure 2: The upstream wave elevation induced by a variable bottom as recorded by the probes in different
computations. U0 = 1.3 m/s, ∆h = 0.75 m, h0 = 0.825 m, Fr = U0/

√
gh0 = 0.46, h0

T = 8.25.

First, we consider the influence of nonlinear effects on upstream waves induced by the ship’s start-up
process on a flat bottom. The velocity is U0 = 1.3 m/s, the draft is T = 0.1 m and the depth is h = 0.45 m.
Therefore, the non-dimensional parameter h

T = 4.5. A numerical wave probe is placed at 49.28 m in front of
the initial position of ship and both of them are placed in the half-width line of the tank. The wave amplitudes
at the probe that are calculated by different models are displayed in Fig. 1. As for the HOS model with flat
bottom (HOS-FB), different nonlinear orders are tested, i.e. M = 1, 2, 3, 4. As shown in the figure, the
front wave, whose peak is recorded at approximately 27.8 s, is induced by the start-up of the ship. The wave
amplitudes calculated by the HOS-FB (M = 3) and HOS-FB (M = 4) are almost the same, which means that
the results are converged. Although nonlinear free-surface boundary conditions are used, HOS-FB (M = 1)
which concentrates on the first-order terms has the same wave amplitude as Grue’s model. Both of them are
5.45 mm, which verifies the linear result. If the nonlinear order in HOS is set to 2, the wave peak reaches
6.86 mm. It means that the second-order nonlinearity plays an obvious role. Considering the FUNWAVE-TVD
and HOS with a higher order, we find the wave amplitudes increase to approximately 7.10 mm. In order to
compare the linear result and nonlinear result, and quantify the role of nonlinearity, we define a parameter

µ =
|HHOS−VB(M=3)−HGrue|

HGrue
× 100%, then µ = 33.95% for this flat bottom condition. To sum up, nonlinearity

plays an important role in the upstream wave generated by the start-up of the ship.
Next, we investigate the nonlinear effect on the upstream waves induced by a variable bottom. The depth

change ∆h = 0.75 m, the average water depth h0 = 0.825 m, and h0

T = 8.25. The depth change is modeled by
a function of β = − 1

2∆h + 1
2∆h[tanh(0.35(x − xa)) − tanh(0.35(x − xb))] where the midpoints of two depth

changes xa, xb are 128.1 m and 179.1 m, respectively. The ship starts at the position which is 25 m in front
of xa with a start-up process and two probes are placed at xp1 = 152.4 m and xp2 = 174.45 m, respectively.
The case with U0 = 1.3 m/s is considered first. In Fig. 2, the wave whose peak is at approximately 34.5 s
is generated by the variable bottom. Comparing the calculations in HOS-VB model with different orders, we
can see the wave amplitude is converged at M = 3. As for the linear model and low-order HOS-VB model,
the results of Grue’s method and HOS-VB (M = 1) model are almost the same. If the second-order nonlinear
terms are considered, the weak peak grows to 6.92 mm. The wave amplitudes in the nonlinear models including
FUNWAVE-TVD, HOS-VB (M = 3) are approximately 7.54 mm, which is 1.80 mm higher than those in Grue’s
model. Comparing the linear and high-order nonlinear results, we get µ = 31.13% which represents an obvious
nonlinear effect. Therefore, it seems that the nonlinearity can not be ignored.

In order to investigate the nonlinear effect systematically, we use different values of T and U0 and set
T = 0.10 m, U0 = 1.3 m/s as a reference. The draft remains 0.1 m and U0 is chosen as 1.1 m/s and 1.5 m/s,

Table 1: The values of µ in different working conditions.
T h0/T U0 Fr µ U0 Fr T h0/T µ

0.10 m 8.25
1.1 m/s 0.39 26.11%

1.3 m/s 0.46
0.05 m 16.50 14.53%

1.3 m/s 0.46 31.13% 0.10 m 8.25 31.13%
1.5 m/s 0.53 47.04% 0.15 m 5.50 50.81%
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Figure 3: The sensitivity of the nonlinear effect on the upstream elevation to ship speed. (a) U0 = 1.1 m/s,
Fr = 0.39, the probe is placed at xp1. (b) U0 = 1.3 m/s, Fr = 0.46, the probe is placed at xp1. (c) U0 = 1.5
m/s, Fr = 0.53, the probe is placed at xp2.
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Figure 4: The sensitivity of the nonlinear effect on the upstream elevation to ship’s draft. (a) Comparison of
pressure distribution with different values of draft at longitudinal section in center plane with the shallow water
depth. (b) T = 0.05 m, h0

T = 16.50, the probe is placed at xp1. (c) T = 0.10 m, h0

T = 8.25, the probe is placed

at xp1. (d) T = 0.15 m, h0

T = 5.50, the probe is placed at xp2.

respectively. The Froude numbers Fr = U0/
√
gh0 of the two conditions are 0.39 and 0.53, respectively. The

results with different velocities are drawn in the Fig. 3. µ in different conditions are shown in Table 1. It is
evident that µ increases with the steady velocity. That means the nonlinear effect is more important when the
Froude number is high. Finally, U0 remains 1.3 m/s and the draft is chosen as 0.05 m, 0.10 m and 0.15 m.
Therefore, h0

T of the three conditions are 16.50, 8.25 and 5.50, respectively. The results with different drafts are
displayed in the Fig. 4. In Fig. 4(a) pressure distribution with different values of draft at a longitudinal section
in the center plane is compared with the shallow water depth. By analyzing the value of µ in Table 1, we find
the nonlinearity is more obvious in conditions with a larger draft. µ can even increase to 50.81% when the draft
is 0.15 m. It can be concluded that the nonlinear effects have an influence on the upstream wave generated by
the depth change and is more significant when the parameter h0

T is small or the depth Froude number is high.
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