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1. Introduction 

Recently, the interaction between waves and periodic structures has attracted considerable 
attention, noting various resonance behaviors, e.g. the so-called Bragg resonance for uniform periodic 
ripples [1], and rainbow trapping for graded or chirped arrays in which the properties of the array 
spacing or elements vary spatially [2]. The concepts built on these resonance mechanisms have been 
proposed for coastal protection by blocking certain waves [3] or for amplifying wave-energy 
harvesting by focusing wave energy of different frequencies at different spatial locations [2]. 

 It is well recognized that these resonances of periodic solid structures (e.g. bottom mounted 
vertical cylinders) occur when the wavelength is comparable to the periodic spacing of the structures 
[4]. Thus, the proposed concepts/systems normally fail to function in long-wave regime [5]. This is 
crucial as tsunamis and storm swells are in this category.  

Metamaterials, consisting of e.g. split-ring/tube or C-shaped cylinder arrays, in acoustics are 
known to be able to incur a new type of resonance at frequencies far below those of conventional 
Bragg resonances [4]. This provides attractive alternatives in the water-wave context. Hu et al. [6] 
and Dupont et al. [7] have demonstrated that the propagation of low-frequency water waves through 
a line of C-shaped cylinders is indeed prohibited, and Bennetts et al. [8] extended the concept by 
grading the cylinder properties. Although Chalmers et al. [9] argued that the formation of this low-
frequency-type resonance may be associated with the resonance of the air column within each 
individual resonator, the underlying mechanics applied to water waves, including the effects of wave 
nonlinearity and water viscosity, remain unclear. 

This work investigates nonlinear water wave propagation through a line array of C-shaped 
cylinders with an emphasis on identifying and characterizing this low-frequency-type resonance. The 
so-called band diagram derived using the Bloch theorem is used for identifying the frequency 
bands/gaps within which the wave transmission/propagation is blocked. The band diagram is initially 
proposed for solid-state physics of semiconductors, and is extended to water waves by e.g. Evans and 
Porter [10], and McIver [11]. The local wave fields are detailed for investigating the captured resonant 
behaviors using first linear potential flow theory and latter more sophisticated CFD-based simulations. 
The effects of various wave parameters and dimensions of the C-shaped cylinder are also analyzed.  

2. Results and Discussion 

We consider a water domain of infinite horizontal extent (defined as along x-axis), and constant 
finite depth h (defined as along z-axis). The vertical coordinate z points upwards, with its origin 
coinciding with the mean water level, and z = - h denoting the bottom. The domain is bounded by a 
flat bottom and by a free surface, and a line array of M vertical C-shaped cylinders are placed along 
the centerline of the domain; details referred to Figs. 3-4. The spacings between adjacent C-shaped 
cylinders in x and y directions are labelled as a and b, respectively, and the individual C-shaped 
cylinder is characterized by its outer radius R1, inner radius R2, and opening ln - see Fig. 1 left in 
which a periodic unit is shown. This unit is used to obtain the band diagram using Bloch theorem; 
details to be followed. 



As mentioned above, the problem of wave-periodic structure interaction is first considered 
within the framework of linear potential flow theory; the flow motion can then be described by the 
velocity potential,   

                 (1) 

where t is the time, andφis depth independent, hence, satisfies the Helmholtz equation in the fluid 
domain, 

                                (2) 

where k is the wavenumber, satisfying the dispersion relation ω2=gktanh(kh) with ω being the angular 
wave frequency, and g the acceleration due to gravity. 

The no-flow boundary conditions are applied on the surfaces of the C-shaped cylinders and the 
flat bottom, 

                                (3) 

where n is the outward unit normal vector. 

In Bloch theorem, the solutions for infinite periodic structures, Eqs. (1-3), are resolved within a 
periodic unit as shown in Fig. 1 (left); the boundaries of which should then satisfy [11],  

 and  in the x direction       (4) 

 and  in the y direction       (5) 

where q1 and q2 are the x- and y-components of Bloch wave vector defined in the reciprocal space, 
respectively, and can be complex numbers in water waves [11]. For given q1a (∈[0, π]) and q2 (= 0; 
as only wave propagation along x-axis is considered), the solutions for the eigenvalues k are obtained 
by solving Eq. (2) using the finite element method; the first three eigenvalues are considered in this 
work, see e.g. Fig. 1 (right; solid lines).  

The numerical solutions are first used to reproduce the experiments in Dupont et al. [8] for 
validation. As in Dupont et al., a = b = 0.65 m, R1 = 0.15 m, R2 = 0.145 m, and ln = 0.16 m. Firstly, 
the calculated band diagram considering infinite arrays is shown in Fig. 1 right. It can be seen that 
there are two frequency ranges (characterized by ka; and shaded by blue) within which no real values 
of q1 can be found. These are so-called stopping bands (or band gaps). As a result, the incident wave 
of the frequency in these stopping bands is blocked by the periodic structure; the wave amplitude is 
attenuated and eventually decreases to zero as infinite number of cylinders is considered. The 
frequencies outside the stopping bands are otherwise formed the so-called passing bands within 
which the waves can propagate freely through the array with changes only in phase. It is found that 
the band gap ka∈[3.08, 3.88] corresponds to the well-known Bragg resonances associated with the 
periodic nature of the array [9], and the band gap ka∈[1.96, 2.80] falls in the category of low-
frequency-type resonances. 

Then the array of three C-shaped cylinders is considered, facilitating a direct comparison with 
the experiments (only finite number of cylinders can be considered in laboratory). The absorbing 
boundary conditions (the method of numerical beach is applied in this work) are applied at the left 
and right ends of the numerical flumes for absorbing reflected waves from the domain. The calculated 
transmission coefficients are compared with the experimental data in Fig. 2. It can be seen that the 
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transmission coefficients are nearly zero or very small in two separated regions, which are overlapped 
with the band gaps identified in Fig. 1. Main trend is captured by the present numerical solutions, 
although differences are observed. This could be due to the energy dissipation and wave breaking at 
the slits in the experiments; details will be presented at the workshop.  

                  
Fig. 1 Layout of a periodic unit of a line array of infinite C-shaped cylinders (left) and the band diagram calculated using 
Bloch therom (right). The band gaps are shaded by blue. a = b = 0.65 m, R1 = 0.15 m, R2 = 0.145 m, and ln = 0.16 m.  

 

 
Fig. 2 Comparison of numerical results of the transmission coefficient with experiment data. (M = 3; a = b = 0.65 m, R1 
= 0.15 m, R2 = 0.145 m, and ln = 0.16 m) 

 
Fig. 3 Contour of non-dimensional free surface elevations at ka = 1.63 (a), 2.74 (b), 2.92 (c) and 3.27 (d).  

Figs. 3(a) ~ (d) show the contour of non-dimensional free surface elevations for four typical 
frequencies, ka = 1.63, 2.74, 2.92 and 3.27, respectively. As expected, no resonance occurs and the 
waves of frequencies outside the band gaps are free to propagate through the array, see Figs. 4 (a) and 
(c). While the wave energy of frequency ka = 2.74 in the second band gap and ka = 3.17 in the first 
band gap are blocked by the array; the differences is that for the former, only the first cylinder plays 
the role (Fig. 3 (b)), and the latter the amplitude attenuation starts at the first cylinder and evolves 



along the array (Fig. 3(d)). This suggests that the resonance mechanism associated with the second 
band maybe a locally behavior incurred by the individual periodic unit, and the resonance in the first 
band should arise due to the periodic nature of the structure, consistent with the Bragg-type 
resonances. We note that similar resonance phenomenon in the second lower frequency band is 
observed by Elford et al. [4] in acoustic waves.  

This is then further investigated by running numerical experiments with one and five C-shaped 
cylinders and results are shown in Fig. 4. It can be seen that the resonance still occurs even if there is 
only one C-shaped cylinder. Meanwhile, comparisons between Fig. 3 (b) and Fig. 4 show that the 
modes of resonance are the same around the first cylinder for the three cases considered. It indicates 
that this low-frequency-type resonance is indeed a locally resonance, and may be caused by the wave 
resonance in the cavity. More results regarding the effect of nonlinearity etc. will be presented at the 
workshop. 

 
Fig. 4 Contour of non-dimensional free surface elevations at ka = 2.74 for cases with one (a) and five (b) C-shaped 
cylinders. For color maps see Fig. 3. 
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