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1 INTRODUCTION
Estimating the hydrodynamic characteristics of bodies interacting with ocean waves is of key
importance in ocean engineering. Solving the wave-structure interaction problem has been a
topic of research for many years, especially using linearized potential flow theory which generally
captures the majority of the physics for typical marine structures. Linear theory allows for a
decomposition of the potential into radiation and diffraction parts, where the focus of this
abstract lies on the former.

For modelling the linear interactions between floating bodies and ocean waves, the impulsive
time-domain formulation has been widely used and studied [1], and in recent years the pseudo-
impulsive approach has gained renewed attention [2]. The basic concept for these impulsive
methods is to force the floating object with an impulse (or pseudo-impulse) in velocity and
measure the resultant force on the body. The Fourier transform of the force divided by the
Fourier transform of the body motion conveniently determines the added mass and damping
coefficients for all frequencies.

Despite the work by Robertson & Sherwin (1999) [3] suggesting an inherent mesh-instability
problem with the spectral element method (SEM) applied to free surfaces waves, significant
progress for pure wave propagation and wave-structure interaction using SEM have been made
over the last half-decade starting with Engsig-Karup, Eskilsson & Bigoni (2016) [4]. Using this
high-order numerical discretization method allows for exceptional geometrical flexibility, high
accuracy and efficiency, and an optimal O(n) scaling of the computational effort. This latter
property is achieved in combination with p-multigrid techniques [5, 6]. For a further review of
the SEM and its beneficial capabilities see [7].

This abstract seeks to highlight recent progress towards developing a computational tool in
the setting of linear potential flow using a pseudo-impulsive approach combined with a higher-
order SEM. This ultimately enables all of the aforementioned features of this numerical method,
including curvilinear elements, unstructured meshes, different radiation conditions, and much
more.

2 GOVERNING EQUATIONS
In a general 3D setting, d = 3, an Eulerian Cartesian coordinate system is adopted, where
the xy-axis represents the horizontal plane, and the vertical z-axis is defined as positive in the
upwards direction. These axes span the entire fluid domain, Ω ⊂ IRd, which is bounded by
the free surface (FS), ΓFS ⊂ IRd−1, and the bathymetry, Γb ⊂ IRd−1. Also, Ω is bounded by
the the body surface, Γbody ⊂ IRd−1, the far-field boundary, Γ∞ ⊂ IRd−1, and potentially also
a symmetry boundary, Γsym ⊂ IRd−1. The depth is denoted by z = −h(x), where x = (x, y),
and the free surface is defined as z = η(x, t), where the time domain is T : t ≥ 0. Notations
for the 2D setting are illustrated in Figure 1.



Figure 1: Notations for the 2D physical domain, Ω.

Applying the theory of linear potential
flow, enables the general solution for wave-
structure interactions to be decomposed into
independently solvable parts, where the focus
of this abstract lies upon the k radiation po-
tentials, ϕk. In the following, we will use the
notation: ∇ = (∂x, ∂y), where e.g. ∂x is the
derivative with respect to x.

The temporal development is governed by
the linearized kinematic and dynamic free sur-
face boundary conditions

∂tη = w̃k and ∂tϕ̃k = −gη on ΓFS, (1)

where the ”∼”-notation indicates quantities evaluated on ΓFS, i.e. ϕ̃k = ϕk(x, 0, t) and w̃k =
∂zϕk|z=0.

Combined with the free surface conditions, the continuity equation, in the form of a Laplace
problem, governs the spatial domain with an in-homogeneous Dirichlet boundary condition on
ΓFS and a homogeneous Neumann boundary condition on Γb,

(∇, ∂z)
2ϕk = 0 for − h ≤ z ≤ 0, (2)

ϕk = ϕ̃k on ΓFS, and ∂nϕk = 0 on Γb, (3)

where ∂n is the derivative in the normal direction to the boundary. For the body boundary
condition on Γbody:

∂nϕk = ξ̇knk on Γbody, where nk =

{
n k = 1, 2, 3

r × n k = 4, 5, 6
(4)

in which n is the normal vector and r is the position vector of a point on Γbody. Furthermore,
ξk denotes the displacement of the body, which is to be modelled as a Gaussian, so that a
tailored frequency content governed by the spatial resolution, is released into the system. See
[2] for more details. The Gaussian should be modelled in such a way that the displacement at
t = 0, is practically zero, which in combination with a zero-imposed velocity potential at the
free surface, will form the initial conditions for (1).

It can be computationally beneficial to impose a symmetry boundary, Γsym, on the symmetry-
axis of the body. For symmetrical and anti-symmetrical problems these are given as

∂xϕk = 0 or ϕk = 0 on Γsym. (5)

On the far-field boundary, Γ∞, appropriate actions should be taken to avoid reflections that
could influence the frequency content of the solution. Combinations of various approaches have
been used: 1) a simple grid stretching technique, 2) classical relaxation zone techniques, and/or
3) an in-homogeneous Neumann-type Sommerfeld boundary condition.

2.1 Added mass and damping coefficients
From [2] it can be shown that the added mass and damping coefficients can be computed via
the Fourier transform, F(·), of the discrete displacement and force time signals as

ω2ajk − iωbjk =
F {Fjk(t)}
F {ξk(t)}

, (6)

where Fjk(t) is the radiation force for mode j caused by an impulse in mode k. This can be
computed by integrating the linear dynamic pressure over the wetted body surface, Γbody.



Figure 2: Numerical results for a surging (left) and a heaving (right) cylinder using 4th order polynomials.

3 NUMERICAL SOLUTION
The Laplace problem given by (2) and its associated boundary conditions are discretized using
the SEM in a 2D setting, hereby splitting the fluid domain, Ω, into non-overlapping triangular
elements with curvilinear sides - if needed - in an unstructured way so that the mesh is more
refined at ΓFS and Γbody than in the rest of the spatial domain. On this discrete domain, global
piece-wise continuous polynomial finite element basis functions of order P will represent the
solution, thus leading to a sparse linear system of equations

Aϕk = b, A ∈ RDOF×DOF , b ∈ RDOF . (7)

The governing temporal equations given by (1) will be evolved in time using a classical
explicit four-stage Runge-Kutta time integration scheme in combination with a conservative
global CFL condition to ensure conditional stability. The time steep is chosen to be ∆t =
Cr∆xmin

umax
, where Cr is the Courant number, Cr ∈ [0.5 ; 1], ∆xmin is the minimum grid spacing

on the free surface elements, and umax is the asymptotic limit of the linear wave celerity, i.e.
umax =

√
g/k tanh(kh).

The evaluation of the time derivatives in the Bernoulli equation for the pressure are com-
puted by finite difference schemes with fourth-order accuracy to accordance with the time
integration scheme. Finally, the Fourier transforms in (6) are evaluated using a fast Fourier
transform.

4 NUMERICAL CASES AND RESULTS
At present moment, the 2D implementation has been validated extensively by achieving spectral
convergence (fixed mesh and increasing polynomial order) and algebraic convergence rates (fixed
polynomial order and decreasing uniform element sizes) for affine and curvilinear triangular
elements, on structured and unstructured meshes. Also, the solver has been validated against
different known benchmarks. A 3D implementation is in progress from which results will be
presented at the workshop including the aforementioned validation analysis.

The case studies that are presented are heavily inspired by those presented in [8] using a
finite difference solver, hence showing normalised results for a half-submerged cylinder (radius:
R = 0.5 and depth: h = 3). The finite difference solver [8] on an overset grid was validated
against analytical infinite-depth solutions calculated using a multipole method.

From Figure 2 the surge-surge and heave-heave results in terms of non-dimensional added
mass and damping coefficients for a cylinder are plotted with the numerical results from [8]. The
results show excellent visual agreement, ultimately confirming the legitimacy and correctness
of the SEM model. Similar results were obtained for the barge case from the reference abstract.



To show the promising geometrical flexibility features of the model, a simple 2D version of
a tetra spar buoy has been implemented, see Figure 3. A symmetry boundary, Γsym, is applied
on the left boundary. The geometry of the structure is: Top part is B = 10 m wide, straight
vertical part is B long, length of leg (measured at the top part of each leg) is 3B, width of the
leg is B/4, and angle between the legs is π/2.

Figure 3: Illustration of an unstructured
mesh for a 2D simplified version of a 3D tetra
spar bouy.

The added mass and damping coefficients are given
in non-dimensional form by

ãjk =
ajk

1
2
πρL2

c

, b̃jk =
bjk

1
2
πρωL2

c

, (8)

where Lc is a characteristic length of the structure taken
to be the leg length, Lc = 3B.

The preliminary results for this geometrically de-
manding structure are shown in Figure 4.
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Figure 4: Numerical results for surging (left) and a heaving (right) 2D tetra spar buoy geometry with h = 20B.
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