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Highlights

• The viscous-ship-wave Green function [1] is applied to study wave patterns generated by a ship hull;

• The KHP approximation [2, 3] is conducted rendering a decomposition of transverse and divergent waves;

• Time-frequency spectrograms are analysed to study the amplitudes of transverse and divergent waves.

1 Green function and Hogner model

The ship-wave Green function represents the flow induced by a point singularity (source, sink, or dipole)
with unit strength translating steadily along a straight path in calm water, and it is an essential building block
to constructing the boundary integral equation to model free-surface flows by an advancing ship hull within the
linear potential theory. As reported in [4], however, very short and steep divergent waves exist when both source
and flow-field points are on the free surface. Moreover, the wave amplitude is unbounded as the flow-field point
approaches the track of the source point. To eliminate these unphysical behaviours, fluid viscosity is accounted
for as in [1]. Under the influence of fluid viscosity effects, and singular behaviour is eliminated, and steep short
waves are severely damped out. This viscous-ship-wave Green function is then used as the fundamental solution
to construct the boundary integral equation to model wave patterns by a ship hull.

A frame of reference Oxyz translating with the ship at a constant speed U in the direction of the positive
x-axis is defined with the Oxy plane coinciding with the undisturbed free surface and z-axis orienting positively
upward. Following [1], the viscous-ship-wave Green function is

4πG = −1/r + 1/d+GF , with {r, d} =
√

(x− ξ)2 + (y − η)2 + (z ∓ ζ)2, (1)

where x ≡ (x, y, z) and ξ ≡ (ξ, η, ζ) denote the flow-field point and source point, respectively, and GF is the
free-surface term in the form of a double Fourier integral. The free-surface term GF can be decomposed into a
non-oscillatory local-flow component GL and a wave component GW dominant in the far field, given by

GL =
2κ

π
Im

∫ 1

−1

eZE1(Z)dq, with Z = −iκ
√

1− q2[−|x− ξ|+ i
√

1− q2(z + ζ)− iq(y − η)], (2)

GW = 4H(ξ − x)Im

∫ ∞
−∞

κ exp

{
κ(1 + q2)(z + ζ) + 4εκ(x− ξ) (1 + q2)3

1 + 2q2
+ iκ

√
1 + q2[(x− ξ)− q(y − η)]

}
dq,

(3)
where euE1(u) is the complex exponential-integral function, κ is defined as κ = g/U2, and ε is a parameter
associated with viscous effects defined as ε = gν/U3.

To model free-surface flows around a ship hull, the highly simple but realistic Hogner model [5] is adopted.
The flow induced by an advancing ship hull is represented by a source distribution with strength nξ over the
mean wetted hull surface

φ(x) =

∫∫
ΣH

nξG(x,ξ)dS, (4)

where ΣH denotes the mean wetted hull surface, and nξ is the component in x-direction of the vector normal
to the ship hull. Introducing polar coordinates (x, y) = h(− cos γ, sin γ), where γ is measured from the negative
x-axis, the potential induced by the ship hull in the far field (h/L� 1) is written in a Fourier-Kochin form [6]

φW (x) =

∫∫
ΣH

nξG
W (x,ξ)dS =

κ

π
Im

∫ ∞
−∞

A(x, q)eiκhψ(q,γ)dq, (5)

where the Kochin function A(x, q) and phase function ψ(q, γ) are written as:

A(x, q) =

∫∫
ΣH

nξ exp

[
κ(1 + q2)(z + ζ) + 4εκ(x− ξ) (1 + q2)3

1 + 2q2
+ iκ

√
1 + q2(ξ + qη)

]
dS, (6)

ψ(q, γ) =
√

1 + q2(cos γ − q sin γ). (7)



2 Uniform KHP approximation

The uniform asymptotic approximation to the wavenumber integral (5) is considered. Unlike the classical
CFU approximation [7] involving the Airy function and its derivative, the KHP approximation [2, 3] only
involves elementary functions. Moreover, the KHP approximation is able to provide an explicit decomposition
of transverse and divergent waves that exist inside the cusps of the wave pattern.

Within Kelvin’s wedge γ < γc ≡ 19◦28′, there are two stationary points requiring the vanishing of the
first-order derivative of the phase function, i.e. ψ′(q, γ) = 0, and they are given by

q± = (1±Q) cot γ/4, ⇒ ψ′′± ≡ ψ′′(q±, γ) = ∓ 4√
3

Q sin γ√
(1±Q)(1∓Q/3)

, with Q =

√
1− 8 tan2 γ. (8)

At the cusp γ = γc, two stationary points coalesce q− = q+ = qc = 1/
√

2, and both first- and second-order
derivatives of the phase function are nil, e.g.: ψ′(qc, γc) = ψ′′(qc, γc) = 0. The third- and fourth-order derivatives
at qc are

ψ′′′c ≡ ψ′′′(qc, γc) = −4
√

6/9, and ψ′′′′c ≡ ψ′′′′(qc, γc) = 8
√

3/9. (9)

Outside Kelvin’s wedge γ > γc, two stationary points turn to two complex saddle points which are a complex
conjugate pair. By deforming the integration path, only the contribution of the saddle point at which the
imaginary part of ψ′′ is larger than zero matters, and the selected saddle point is

qo = (1−Q) cot γ/4, ⇒ ψ′′o ≡ ψ′′(qo, γ) =
4√
3

Q sin γ√
(1−Q)(1 +Q/3)

, with Q = i

√
8 tan2 γ − 1. (10)

Based on [3], the approximation to wave pattern inside the cusp γ ≤ γc, combining ones due to Kelvin and
Havelock, is written as

φW (x) ≈ κ

π
Im
[
FKH− ei(κhψ−+π/4) + FKH+ ei(κhψ+−π/4)

]
, (11)

where the functions FKH± are defined as

FKH± = (1− e−u
4/3

)

√
2πA±√
κh|ψ′′±|

+ e−u
4/3 C∗HAc

(κh|ψ′′′c |)1/3

[
1∓ Γ(2/3)

Γ(1/3)

(
A′c
Ac
− ψ′′′′c

6ψ′′′c

)(
6

κhψ′′′c

)1/3
]
, (12)

with C∗H ≡ Γ(1/3)/61/6 ≈ 1.987334, and u = 3κh|ψ+ − ψ−|/4. Eq. (11) provides an explicit decomposition
of the two systems of waves consisting of transverse waves and divergent waves associated with the first term
and second term, respectively, in the square bracket of Eq. (11). At the cusp, there is a phase difference π/2 of
transverse and divergent waves. The approximation to wave pattern outside the cusp γ ≥ γc, which combines
approximations due to Havelock and Peters, is written as

φW (x) ≈ κ

π
Im
[
FHPo ei(κhψo+π/4)

]
, (13)

where the function FHPo is defined as

FHPo = (1− e−v
4/3

)

√
2πAo√
κhψ′′o

+ e−v
4/3 (1− i)C∗HAc
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[
e−2v/3 + i

Γ(2/3)
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(
A′c
Ac
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6

κhψ′′′c

)1/3
]
, (14)

with v = 3κh |Im(ψo)|/2.

3 Wave patterns
For illustrative purposes, wave patterns generated by a modified Wigley hull model are considered, and the

geometry of the Wigely hull is defined as

y = ± L
10

[(1−X2)(1− Z2)(1 + 0.2X2) + Z2(1− Z8)(1−X2)4], where X =
2x

L
and Z =

10z

L
, (15)

with −L/2 ≤ x ≤ L/2 and −L/10 ≤ z ≤ 0. In Eq. (15), L denotes the length of Wigley hull, and the Froude
number associated with ship’s speed is defined as F = U/

√
gL. Fig. 1 exhibits contour plots of wave patterns

generated by the modified Wigley hull at F = 0.4, 0.6, and 0.8, respectively. Wave patterns together with
their decomposition into transverse and divergent waves inside the cusp are displayed in the left, middle, and
right subplots, respectively. The white dashed line in the left subplot corresponds to the cusp. At F = 0.4,
the amplitude of transverse waves is appreciably larger than that of divergent waves, whereas the tendency is
reversed at F = 0.8. The amplitudes of two wave systems are comparable at F = 0.6. Therefore, divergent
waves play an increasingly dominant role with the increasing ship’s velocity. Moreover, short divergent waves
disappear near the track under the joint influences of fluid viscosity effects and ship hull interference effects as
expounded in [1] and [8], respectively.



Figure 1: Wave patterns as well as decomposition into transverse waves and divergent waves for F = 0.4, 0.6,
and 0.8 displayed in the top, middle, and bottom rows, respectively.

4 Time-frequency spectrogram
To further study the amplitudes of transverse and divergent waves inside Kelvin’s wedge, the time-frequency

spectrogram is studied. Based on the geometrical relation as in Fig. 2, we can obtain the frequencies of transverse
waves and divergent waves measured at the sensor location [9]

ω± =
g

2
√

2U

√
χ2 ± χ

√
χ2 − 8 + 4, with χ ≡ Ut/y, (16)

where y denotes the lateral distance between the sensor and ship’s sailing line, and t = 0 corresponds to the
time instant when the mid-ship is aligned with the sensor location. Eq. (16) gives rise to two branches plotted
by the black line in Fig. 3. The lower and upper branches correspond to the frequencies of transverse waves and
divergent waves at the sensor location. Two branches intersect at Ut/y = 2

√
2 = 1/ tan γc when the cusp of

Kelvin’s wake meets the sensor. With the time marching, the frequency of transverse waves is nearly constant,
whereas that of divergent waves is steadily increasing. Besides, Fig. 3 shows time-frequency spectrograms of
wave patterns generated by the modified Wigley hull at y/L = 20 for F = 0.4, 0.6, and 0.8 displayed in the left,



middle, and right subplots. The frequencies of transverse waves and divergent waves determined by spectrograms
are in good agreement with the dispersion relation given by Eq. (16) as expected. At F = 0.4 as in the left
subplot, divergent waves are inconsequential in consistency with top subplot in Fig. 1. With the increasing the
Froude number, divergent waves are playing an increasingly important role. With the time marching, however,
the amplitude of divergent waves at the sensor location diminishes. At the sensor location, the lateral distance
from ship’s sailing line keeps constant, whereas the inline distance is consistently increasing resulting in the
decreasing of the polar angle γ. As elucidated in [1] and [8], divergent waves are largely damped out under
influences of fluid viscosity and ship hull interference. Therefore, the sensor can only measure divergent waves
over a period of time. Comparing three subplots, the duration of divergent waves is increasing with ship’s speed.
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Figure 2: Ship wave dispersion. I is the sensor’s position, vp = U cos θ the phase velocity, vg = 0.5U cos θ the
group velocity, ‘purple semi-circle’ the boundary of energy at t0 + τ generated by the ship at time instant t0,
Uτ the inline distance sailed from t0 to t0 + τ , and Ut the inline distance from the sensor to the ship at t0 + τ .

Figure 3: Spectrograms of ship-generated waves for F = 0.4 (left), 0.6 (middle), and 0.8 (right).
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