
Generalizing the optimal axisymmetric point-absorber wave energy
converter to irregular waves

Emma C. Edwards1,2*, Martyn Hann1, Deborah Greaves1, Dick K. P. Yue2

[1] School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth, UK
[2] Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

*emma.c.edwards@plymouth.ac.uk

HIGHLIGHTS
We extend analysis which found the optimal shape of an axisymmetric point-absorber wave
energy converter for a monochromatic wave, called 𝒮𝑂 , to irregular waves. We show that as the
incident wave spectrum width increases, the optimal resonant wavenumber for 𝒮𝑂 decreases
and the optimal power take-off coefficient increases.

1 INTRODUCTION AND THEORY
In [1], we perform an optimization of geometry of an axisymmetric point-absorber wave en-
ergy converter (WEC), in which we assume a monochromatic unidirectional incident wave, all
within the context of linearized potential theory. The optimization framework involves ensuring
maximum power (derived in [2]), specifying practical motion constraints and then minimizing
surface area as a proxy for cost. We carry out a nonlinear optimization for a broad range of ge-
ometries for four different constraint regimes, for the problem of a WEC moving and extracting
energy in the heave-mode only, as well as the full 3D problem of a WEC moving and extracting
energy in heave, surge and pitch. In this paper, we focus on the shape that results from the
heave-only problem, where the heave motion is constrained to be no more than three times
the incident wave amplitude, and the draft of the body times the wavenumber over the heave
motion is required to be larger than 0.1. This shape, which we call 𝒮𝑂 , is shown in figure 1.

Figure 1: Shape 𝒮𝑂 , the optimal shape for an axisymmetric heaving WEC [1]

In this paper we extend the analysis to irregular waves. Instead of performing a full new op-
timization, we assume the shape to be 𝒮𝑂 , and we develop a methodology to determine how the
optimal properties of 𝒮𝑂 depend on the incident sea-state, described by a spectrum. As shown
in figure 1 and described in [1] and [3], geometric descriptions of 𝒮𝑂 are nondimensionlized by
incident resonant wavenumber 𝑘𝑟 . In this paper, we will determine what 𝑘𝑟 of 𝒮𝑂 should be
to maximize power given an incident spectrum, and how this depends on spectrum width and
shape. Specifically, this tells us how the optimal size of 𝒮𝑂 depends on the incident sea state.



For regular waves, there is a known expression for the optimal power take-off (PTO) coef-
ficient ([2], [3]), but for irregular waves there is no such expression. Therefore, we also look in
this paper how the optimal PTO coefficient depends on spectrum width and shape.

We assume linear potential flow, deep water, heave-only motion, and a PTO modeled as a
linear damper with damping coefficient 𝛽33. The incident sea state is assumed unidirectional.
We consider three types of incident spectrum. The first, a top-hat spectrum, is described by

𝑆𝑇𝐻 (𝑘) =
{
1/(2𝛿) , if 𝑘𝑚 − 𝛿 < 𝑘 < 𝑘𝑚 + 𝛿

0, otherwise,
(1)

where 𝑘𝑚 is the mean wavenumber. The second, a Gaussian spectrum, is described by
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where 𝜎 is the standard deviation. Finally, the Bretschneider spectrum is described by
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where 𝐻𝑆 is the significant wave height, and 𝑘𝑚 is the modal wavenumber. We define [ 𝑓 ]𝑆 ≡∫
𝑓 (𝑘)𝑆(𝑘)𝑑𝑘. To quantify the extractable power, given an incident spectrum 𝑆(𝑘), we look at

the ‘spectrum capture width,’
𝑊𝑆 = [𝑃 (𝛽33)]𝑆/[Π]𝑆, (4)

where 𝑃(𝑘, 𝛽33) is extractable power at wavenumber 𝑘 with PTO coefficient 𝛽33 and Π(𝑘) is
incident power per unit crest-length at wavenumber 𝑘. Note that 𝛽33 cannot change for different
wavenumbers. To compare PTO coefficient with the optimal value for a monochromatic wave,
we define

𝛽
′

33 =
𝛽33

𝐵33(𝑘𝑟)
. (5)

For the top-hat spectrum (equation 1), the spectrum width, Δ, is measured by half-width of the
spectrum, 𝛿/2, and for the Gaussian spectrum (equation 2), Δ is measured by the half-width
at half-max. We nondimesionalize Δ, 𝑘𝑟 and 𝑊𝑆 by mean or modal wavenumber 𝑘𝑚.

We define W to be the maximum 𝑘𝑚𝑊
𝑆 for a given 𝛽

′

33 and spectrum, and K to be the

optimal 𝑘𝑟/𝑘𝑚 that gives that W. Furthermore, we define 𝛽
′∗
33 to be the optimal value of 𝛽

′

33 for
a given spectrum, with W∗ being the corresponding maximum W and K∗ the corresponding
optimal K. We determine how 𝛽

′∗
33,K

∗ and W∗ change with different shape (type) and width,
Δ/𝑘𝑚, of spectra.

2 RESULTS AND DISCUSSION
Figures 2 a) and b) show that the optimal resonant wavenumber K = 𝑘𝑟/𝑘𝑚 decreases as Δ/𝑘𝑚
increases, for both the top-hat and Gaussian spectra. Because K < 1, we see that for wider
spectra the optimal WEC is not in resonance at the mean/modal wavenumber of the spectrum.
Figure 2 c) and d) show that there is an optimal 𝛽

′

33 for each spectra, which increases as Δ/𝑘𝑚
increases. That is, the optimal PTO coefficient is larger for wider spectra. Figure 3 shows that,
as Δ/𝑘𝑚 increases, W∗ a) increases for top-hat spectra but b) stays approximately constant for
Gaussian spectra. Furthermore, figures 3 a) and b) show that K∗ decreases and 𝛽

′∗
33 increases

with increasing Δ/𝑘𝑚 for both types of spectra.



Figure 2: The optimal K = 𝑘𝑟/𝑘𝑚 as a function of 𝛽
′

33, for different Δ/𝑘𝑚 values for (a) the
top-hat spectra, and (b) Gaussian spectra, and the corresponding W = 𝑘𝑚𝑊

𝑆 values, for (c)
the top-hat spectra and (d) Gaussian spectra

Figure 3: The optimal 𝛽33
′∗, and corresponding maximum W∗ and optimal K∗, as functions

of Δ/𝑘𝑚 for (a) the top-hat spectra and (b) the Gaussian spectra

And finally, we consider a more realistic incident sea state by considering the Bretschneider
spectrum (equation 3). The Bretschneider spectrum differs from the other two spectra we
consider because: (i) it is not symmetric– the spectrum is wider above the peak than below
it, and (ii) its width is not changeable. We calculate that the width below 𝑘𝑚 at half-max is
Δ/𝑘𝑚 = 0.37, and above 𝑘𝑚 it is Δ/𝑘𝑚 = 0.89. For the Bretschneider spectrum we calculate
𝛽

′∗
33 = 1.5,K∗ = 0.84, and W∗ = 0.74. This extractable power is less and the optimal resonant

wavenumber is larger than an equivalently wide symmetric spectrum. We hypothesize that
this is because of the asymmetry of the spectrum. Since there is not as much energy at small
wavenumbers for the Bretschneider spectrum, having a smaller K will not be as beneficial, and
thus the resonant wavenumber should be close to the modal wavenumber.

When determining 𝒮𝑂 in [1], we apply constraints (following from [4]) on (i) the body heave
body motion 𝜉3 relative to the incident wave amplitude 𝐴: 𝛼3 < 𝛼0, where 𝛼3 = |𝜉3 |/𝐴 and 𝛼0
is the design constraint, and (ii) wavenumber 𝑘 times draft at the centerline 𝐻 relative to 𝛼3:
𝜖3 > 𝜖0, where 𝜖3 = 𝑘𝐻/𝛼3 and 𝜖0 is the design constraint.

For irregular waves, the ‘spectrum motion constraint’ becomes 𝛼𝑆
3 < 𝛼𝑆

0 where



𝛼𝑆
3 =

(
[( |𝜉3 |/𝐴)2]𝑆/[1]𝑆

)1/2
, (6)

and 𝛼𝑆
0 is the design constraint. The ‘spectrum steepness constraint’ becomes 𝜖𝑆3 > 𝜖𝑆0 , where

𝜖𝑆3 =

(
[1]𝑆/

[( |𝜉3 |/𝐴
𝑘𝐻

)2]𝑆)1/2
, (7)

and 𝜖𝑆0 is the design constraint. For the Bretschneider spectrum, using the optimized parameters

of K∗ = 0.84 and 𝛽
′∗
33 = 1.5, we calculate 𝛼𝑆

3 = 1.62 and 𝜖𝑆3 = 0.19. If 𝛼𝑆
0 = 3 and 𝜖𝑆0 = 0.1, the

calculated values clearly adhere to the spectrum motion and steepness constraints. If stricter
motion constraints were desired, the methodology described in this paper is general and could
therefore be applied to a different shape.

3 CONCLUSION
In a recent paper, we perform an optimization of the geometry of an axisymmetric point-
absorber WEC. In this paper, we extend analysis on the optimized shape, called 𝒮𝑂 and shown
in figure 1, to irregular waves. We consider top-hat and Gaussian spectra to investigate how
width and shape of spectrum influences the optimal resonant wavenumber of 𝒮𝑂 and optimal
PTO coefficient, and we also consider a Bretschneider spectrum to study a more realistic sea-
state. We show that as the spectrum width increases, the optimal resonant wavenumber of 𝒮𝑂

decreases and the optimal PTO coefficient increases. Compared to the idealized spectra, the
extractable power for the Bretschneider spectrum is less, and the optimal resonant wavenumber
is larger than an equivalently wide symmetric spectrum.

These conclusions give us insights into WEC design. Namely, when designing a WEC in
irregular waves, it should be larger than if it was in resonance at the peak wavenumber, and the
size increases with wider spectra. The PTO should not be tuned to be equal to the radiation
damping at resonance, as was the case for regular waves, and should be larger with wider
spectra. When designing a WEC for a particular location the spectrum shape is an important
part of the design consideration. While we begin with the optimized shape found from regular
waves, our methodology of determining size and PTO of the WEC is general and could be
used for any WEC shape and incident spectrum. It would be interesting to perform a full
optimization of the shape in irregular waves to compare the result to 𝒮𝑂 . Finally, this work
assumes linear potential flow, so physical modelling and/or higher-order methods (i.e. [5])
should be used for further analysis.
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