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1. Introduction 

Periodic submerged structures/bars, either natural (such as tidally or wave generated small sandbars) 

or artificial (i.e. engineering structures), are often found in coastal areas. This supports the occurrence of 

Bragg resonance if the incident waves are twice as long as the bar length [1]. Bragg resonance is associated 

with accumulative, constructive interference of incident and reflected waves, hence, is fundamentally a 

linear wave phenomenon (i.e. superposition of waves). Nevertheless, theoretical analysis and numerical 

simulations in the context of nonlinear wave-wave interactions were also carried out, and new types of 

Bragg resonances are reported [2-4].  

Mattioli [4] demonstrated that, for particular combinations of the two sinusoidal bottom components, 

the response curve shows reflection peaks at distinct frequencies to class I Bragg reflection (the resonance 

associated with linear superposition of waves mentioned above). This feature is denoted class II Bragg 

resonance which manifests bottom nonlinearity. In contrast, the resonance arises from free-surface 

nonlinearity is denoted class III Bragg resonance. This would occur if the interaction between surface waves 

and the submerged bars (with a single wavenumber) gives rise to two new waves with wavenumbers equal 

to the sum and difference of those of the surface waves and the sinusoidal bottom [2]. The former (c.f. 

difference of the wavenumbers) travels away from the seaward side of the Bragg bar field (i.e. higher order 

reflected waves, and so-called sub-harmonic Bragg resonant wave), and the latter (c.f. sum of the 

wavenumbers) the leeward side (i.e. higher order transmitted waves, and so-called super-harmonic Bragg 

resonant wave). The class III Bragg resonance (both sub- and super-harmonic) has been captured 

numerically by Liu and Yue [2] using a higher order spectral (HOS) model, while the experimental 

evidences were provided by Peng et al. [5]. These (numerical and physical) experiments were carried out 

with carefully generated water waves over a sinusoidal bottom with carefully selected dimensions, informed 

by the corresponding theoretical Bragg resonance conditions. That is, class I as well as the sub- and super-

harmonic Class III Bragg resonances were observed separately with different bottom configurations 

(characterized by the bottom height and its wavelength). 

In this work, Bragg resonances, resulting from nonlinear wave evolution and wave-structure interaction 

as a surface wave propagating over a periodic sinusoidal structure with a single wavenumber, are 

investigated using a higher order boundary element model (HOBEM) within a framework of potential flow 

theory. Even for this rather simpler situation, the importance and implication of these nonlinear resonances 

may be underscored; multiple resonances at different orders may be obtained for the same system. In 

addition to Bragg resonance conditions (i.e. class I and III) mentioned above, resonances at a surface 

wavenumber close to an integer multiple of half a bottom wavenumber may occur [6]. This hypothesis is 

supported by significant harmonic generation (i.e. redistribution of wave energy from the fundamental 

frequency into the first and higher harmonics) over a submerged breakwater. Dick and Brebner [7] claimed 

that up to 64% of the transmitted wave energy is transferred to higher harmonics of the incident wave. 

Harmonic waves up to at least 4th order are identified by Christou et al. [8].  

2. Verification with published benchmarking experiments 

Here, an in-house HOBEM model developed in Ning et al. [9] is utilized for capturing Bragg 

resonances of nonlinear water waves. Its performance in capturing complex wave-multiple structures 

interactions and in predicting the resulting Bragg resonant reflected/transmitted waves will be assessed by 

comparing to published benchmarking experiments [10-11].  
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In the experiments, a 10-m long test section consisting of 10 × 1 m wavelength, 0.05 m amplitude 

sinusoidal bars was constructed (Fig. 1 right), and the incident wave period ranged from 0.5 to 3.0 s. That 

is, the ratio of surface and bar wavenumbers, 2k/kb, ranged from 0.5 to 2.5, covering the Class I Bragg 

resonance condition predicted by the linear theory (i.e. 2k/kb = 1). Here, k is the surface wavenumber and kb 

is the bottom wavenumber (= 2π/Lb; Lb = 1 m is the bar length). The water depth was in the range of 0.08 ≤ 

b/h ≤ 0.16, in which b (= 0.05 m) is the bar amplitude and h the water depth. Noted that only cases with b/h 

= 0.16 is considered in this work. The reflected and transmitted waves were measured with two gauge-pairs 

5 m on the up-wave and down-wave sides of the bars, respectively – results see Fig. 1 left (squared symbols). 

The spatial distribution (in the longitudinal direction) of the reflection coefficient was also measured by 

moving two pairs of gauges along the wave tank with a step of 0.25 m, as shown in Fig. 1 right (squared 

symbols).   

A 2-D numerical wave tank with a length of (8λ + 10) m was set up to reproduce the experiments; the 

bars were arranged 3λ away from the inlet boundary, and the last 2λ was used as the damping zone to 

minimize the wave reflections from the outlet boundary. λ is the surface wavelength. The incident waves 

were generated by using a source function method so that the re-reflection of waves by the inlet boundary 

is avoided [12]. It is noted that the mesh and time step independence tests were carried out but omitted here 

for brevity.  

The numerical results are compared to the experimental measurements in Fig. 1. The solutions 

calculated by the perturbation theory outlined in Mei [13] are also included. It can be seen that the present 

numerical results agree well with the solutions of Mei, although they both deviate from the experimental 

measurements slightly, especially in the area around the class I Bragg resonance condition. This could be 

due to the small reflections from the wave absorbing beach in the experiments, which are not being 

represented in our simulations and Mei’s model. Another possible reason is the re-reflection of waves by 

the wave generator, although Davies and Heathershaw [11] stated that this is irrelevant if the equilibrium 

conditions were attained in the wave tank.  

      
Fig.1 Reflection coefficients as a function of the wavenumber ratio for b/h = 0.16 and n =10 (left); and the spatial 

distribution of the reflection coefficient under the Bragg resonant condition of 2k/kb=1 (right). 

In order to qualify the effects of reflections from both outlet and inlet boundaries, two additional sets 

of numerical simulations were carried out; one with the capability of outlet damping zone (in absorbing the 

waves) being reduced and one with the waves being generated via flux through a vertical wall. The length 

of the numerical flume and the location of the periodic bars are the same as those in the experiments now. 

It is found that the small reflections from the wave absorbing beach actually play relatively smaller role, 

however, the re-reflections by the wave-generator could contaminate the results to a certain level. The time 

histories of the free surface elevation 10 m away from the toe of bars are shown in Fig. 2; results from 

simulations with and without re-reflections from the inlet boundary are both included. It is clear that they 

derivate from each other significantly after t = ~40 s, and there are three quasi-steady stages, labelled as A, 

B and C in Fig. 2. These stages could be considered to reach the equilibrium conditions as stated in Davies 

and Heathershaw [11]. It is not clear which time window was used in post-processing the experimental 

measurements; if the time histories longer than 40 s were considered, the results may be contaminated by 
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the re-reflections. We calculated the reflection coefficients with different time windows and an example 

new set of results are also shown in Fig. 1 (black dashed lines). The numerical results are now quite close 

to the experimental measurements even in the area near the resonant conditions; the phenomenon of Bragg 

resonance is well captured with both resonant reflected waves and so-called downshifting in the resonant 

frequency (i.e. the actual resonant frequency is smaller than that predicted by linear theory) being well 

represented by the present numerical model. We highlight here that the re-reflections may be of significance, 

however, the level of contamination remains unclear as the physical wave paddle characterisations and time 

histories/windows used for calculating the reflection coefficients were not presented.   
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Fig.2 Time series of the free surface elevation measured at 10 m away from the toe of the bars. Red line: wave is 

generated via a source function method, i.e. without re-reflections; Black line: wave is generated via a flux through a 

vertical wall, i.e. with re-reflections. 

3. Multi-Bragg resonance system 

The verified HOBEM model is now used to explore the reflected and transmitted waves over a periodic 

structure in nonlinear wave field. A wider range of bar heights (b/h), bar number (n), and wave steepness 

(ka) is considered. Here, a is the surface wave amplitude. An example results for a relatively higher bar 

structure (b/h = 0.48) is shown in Fig. 3. Both 1st (black) and 2nd (red) harmonic reflected/transmitted waves 

are included. Reflected waves are plotted using solid lines and transmitted waves dashed lines. The incident 

and reflected/transmitted free waves are decomposed from the total signals using either the so-called two-

point method [14] or four-point method [15].  

In Fig.3, several reflection and/or transmission peaks are observed. It is seen that k1=kb/2 satisfies class 

I Bragg resonance condition, and k3
r = 2k1-kb and k3

t = 2k1+kb (both with the frequency ω2 = 2ω1; the 

superscript r indicates reflected wave and t transmitted wave) satisfy class III Bragg resonance condition 

with the resonance generated reflected/transmitted waves with wavenumber k1h = 0.98, k3
t h = 4.62, and k3

rh 

= 1.04. With these new surface waves and the same bottom components, new resonance occurs (highlighted 

in green boxes); the first one satisfying (2k3
t = kb; transmitted wave in dashed line) and the condition for the 

second one remains unclear and being explored (further results will be presented at the workshop). This 

multi-resonance system is of importance as in practical applications, the incident wave field often contain 

multiple components. They themselves and their combinations may satisfy the resonance conditions to 

generate resonant waves. And these resonant waves may then satisfy and/or engage in multiple resonances 

with the incident components. The wave field becomes increasingly complex, and may generate a certain 

type of waves, e.g. long infragravity waves that are of special importance to coastal process and engineering 

applications. 

Also noted that the identified Bragg resonant frequencies are shifted away from the corresponding 

theoretical solutions (dashed black vertical lines) due to the strong nonlinearity. The class I Bragg resonant 

frequency is downshifted as observed in e.g. [10] and [11], however, the class III Bragg resonant frequency 

is upshifted, which (at least to authors’ knowledge) is first observed. The nonlinearity also plays significant 

role in determining the so-called effective frequency bandwidth (within which the reflection coefficient is 

larger than a certain value; 0.5 according to [16]). It is found that the maximum reflection coefficient 

increases with bar heights (b/h), bar number (n), and wave steepness (ka). These parameters are also found 
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to affect the bandwidth significantly. More detailed and further results will be presented at the workshop, 

including the significant harmonic generation and energy transfer under the Bragg resonance conditions. 

 

Fig. 3 Multi-Bragg resonance over a periodic structure with kbb = 0.94, b/h = 0.48, and n = 10. The wave amplitude is 

a0 = 0.01 m. Black solid line: the fundamental reflected wave; Black dashed line: the fundamental transmitted wave; 

Red solid line: the 2nd-order free reflected wave; Red dahsed line: the 2nd-order free transmitted wave. 
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