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1. Introduction 
The problem of ice-water-structure interaction received considerable attentions in recent years. One of a typical case 

is that of an air cushion vehicle (ACV) moving in ice covered regions. Comprehensive reviews of a load moving on an 

infinite ice sheet was given by Squire et al. (1996). Ni and Zeng (2019) and Sturova and Tkacheva (2019) studied the 

problem of a load moving in an ice channel, where the ice sheets on both sides of the channel were treated as unbounded. 

The problem of a load moving along a frozen channel, where the ice sheet is confined by two vertical walls on both sides, 

also received attention. Shishmarev et al. (2016) and Khabakhpasheva et al. (2019) studied the problem of a load moving 

along a frozen channel with clamped edge conditions. The Kelvin-Voigt model of viscoelastic ice was used for a load 

moving at constant speed, see Shishmarev et al. (2016). They estimated the critical speeds in term of the maximum 

deflection, which were found to be larger than the first critical speed of the elastic ice in Korobkin et al (2014). 

Khabakhpasheva et al. (2019) studied the time-dependent problem of a load moving in ice channel without account for 

damping in the ice model. Recently, Ren et al. (2020) studied the problem of waves propagating in an ice channel with a 

crack. The critical speeds of waves in this channel were obtained. In the present paper, we study a moving load in an ice 

channel with a crack. 

2. Formulation of the problem and solution procedure 
The problem of a load moving in an ice channel with a crack in the ice cover at a constant speed U is considered, as 

sketched in figure 1. A coordinate system that moves together with the external load along the channel is used. The origin 

O of the system is located at the center of the load. The z-axis points upwards, opposite to the gravitational acceleration 
g . The channel is of rectangular cross section with constant depth H and width 2L. The channel is of infinite extent in 

the x-direction. The channel is occupied with liquid of density  . The liquid is inviscid and incompressible. The ice 

sheet is modelled by thin viscoelastic Kelvin–Voigt plate. The ice sheet is of constant thickness h and with rigidity 
3 2[12(1 )]D Eh = − , where E is Young's modulus of ice and   is Poisson's ratio. The ice sheet floating on the water 

surface is divided into two pieces by a crack at 0y = . The external load is modelled by a localised pressure ( , )P x y  

over the upper surface of the ice sheet. We assume that the problem is stationary in the moving coordinate system.  

The deflection of the ice sheet, ( , )z w x y= , is a solution of the viscoelastic plate equation written in the moving 

coordinates, 
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where / E =   is the retardation time,    is the viscosity of the ice, 
i   is the ice density, ( , ,0)p x y   is the 

hydrodynamic pressure acting on the lower surface of the ice sheet, ( , )P x y   is the external pressure. The external 

pressure ( , )P x y  is assumed constant in the rectangular of length 2a and width 2b whose center is located at the origin, 

0( , )   ( ,  )P x y P x a y b=   .                                   (2) 

In this problem, the deflection of ice across the channel is symmetric, ( , ) ( , )w x y w x y− = . Note that the ice sheet is not 

continuous at 0y = , where the ice edges are free of stresses and shear forces, 
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The other edges of ice sheet are clamped to the walls of the channel 
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The hydrodynamic pressure ( , ,0)p x y  acting on the ice/water interface is given by the linearized Bernouli equation, 
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x


 


= −


   ( , )x L y L−   −   ,                        (5) 

where ( , , )x y z  is the velocity potential of the flow beneath the ice sheet, which satisfies the Laplace equation in the 
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flow region, 
2 0 =    ( , , 0)x L y L H z−   −   −   ,                        (6) 

and the boundary conditions, 
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where the third equation is the linearized body boundary condition. Due to the damping of the ice sheet, the hydroelastic 

waves decay far away from the moving load, 

, 0   ( )w x → → .                                    (8) 

In the linear theory of hydroelasticity, the strains in the ice sheet vary linearly through the ice thickness being zero 

at the middle of the plate thickness. At any location, the maximum strain is achieved at the surface of the ice. We are 

concerned only with positive strains which correspond to elongation of the ice surface and tensile stresses in the ice. The 

strain tensor is given by 
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where z is the coordinate across the ice thickness, / 2 / 2h z h−   .The tensor (9) describes the strain field in the ice 

sheet. In order to find the maximum strain in the ice sheet we need to find the eigenvalues of the strain tensor at each 

location. The strains are proportional to the maximum pressure 
0P  of the external load within the linear theory. The 

linear theory of hydroelasticity can be used when 2 2

x yw w+  is small and the strains in the ice sheet are below the yield 

strain 
cr  of the ice. The yield strength of a material is defined as the strain 

cr=   at which a material begins to deform 

plastically. The strains in the ice sheet should be below the yield strain of ice, to prevent our viscoelastic model from 

being unrealistic. Strains greater than the yield strain 
cr  are assumed to lead to ice fracture.  

3. Solution of the problem 
The coupled problem (1)-(8) is solved with the help of the Fourier transform in the x direction. The plate equation 

(1) provides 
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where 
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Since ( , )w x y   is symmetric in the y direction, so is ( , )Fw y  . In this way, ( , )Fw y   can be sought as the 

following superposition, 
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with coefficients ( )nF   to be determined. The modes ( )n y  are non-trivial solutions of the eigen-value problem 
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with the corresponding eigen values 
n . The modes ( )n y  are orthonormal, 
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where 1nn =  and 0nm =  for n m . Substituting (11) and (12) into (10), one has 
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We write ( , , )F y z   as 
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where the potentials 
n , 1n  , are the solutions of the following boundary value problem 
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Multiplying both sides of (14) by ( )k y  and integrating the result in y from 0 to L using the relation (13) and (15), we 

find 
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The system (18) can be written in the matrix form 

F P=A ,                                         (19) 
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C
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are calculated analytically for each  . 

To solve equation (19) we distinguish the real and imaginary parts of the vector F , R IF F iF= + . Note that all 

other vectors and elements of the matrices in (19) are real, which provides the systems of nonhomogeneous equations 

with respect to RF  and IF  with symmetric matrices. Thus, equation (19) can be written as 
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In the present problem, ( )kP   is an even function of  . It can be shown that ( )R

nF   are even and ( )I

nF   are 

odd functions of variable  . The deflection ( , )w x y  is obtained by the inverse Fourier transform 
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4. Results 

The results of the present study are presented in terms of the ice deflections and strains in the moving coordinate 

system. Calculations are performed for a freshwater ice with density 3917 kg/mi =  , Young's modulus 

9 24.2 10  N/mE =  , Poisson's ratio 0.3 =  and the ice thickness 10 cmh = . The retardation time is 0.1 s = . The 

half-width L of the channel is 10 m and the water depth H is 5 m. Water density is 31000 kg/m =  and the gravity 

acceleration is 29.8 m/sg = . The load (2) is applied over a square area, 1 ma b= = , with 
0 1000 PaP = . The load 

speed U is varied from 3 m/s to 20 m/s. 

For waves propagating in such an ice channel with the crack, the first critical speed of the first even hydroelastic 

wave is 7.09 m/s, and the second critical speed of the first even hydroelastic wave is 8.66 m/s. The nondimensional 

minimum of the ice sheet deflections, min( ( , ))w x y , and the nondimensional maximum of the ice sheet deflections, 

max( ( , ))w x y , for different load speed are shown in figure 2, where 
0 /scw P g= . It is seen that the magnitudes of both 

min( ( , ))w x y  and max( ( , ))w x y  peak at 8.65 m/sU = , which is close to but not equal to the second critical speed of 

the first even hydroelastic wave. There are also peaks at the first critical speed of the same wave, but they are less 

pronounced, which could be caused by the relatively large value of the retardation time for the speeds close to the first 

critical speed. The maximum strain in the ice sheet, max ( , )x y , and maximum strain along the crack, max ( , 0)x  , 

are shown in figure 3, where 2

0 / (2 )sc P h gL=  . The wave form for load moving with 8.65 m/s and 8.66 m/s is shown 

in figure 4. It is seen that the ice deflections differ significantly for these two speeds, even though their values differ only 

by 0.01 m/s. 

 



 

 
Figure 1. Sketch of a load moving along an ice 

channel with a crack. 
Figure 2 The minimum and maximum ice deflections are 

shown as functions of the load speed. 

  
 

Figure 3 The maximum strains in the whole ice plate 

and along the crack as functions of the load speed. 

Figure 4 Three-dimensional ice deflections and ice 

deflection along the crack for load speeds, (a-b) U=8.65 

m/s and (c-d) U=8.66 m/s. 
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