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1. Introduction 

The scope of this study is to get insight to the unclarified field of the higher order phenomena occurring when a 

breaking wave hits a vertical wall. Literally, our analysis goes one step further the investigation by Chatjigeorgiou et 

al (2015) and Tsaousis and Chatjigeorgiou (2020). In the first one, the authors propose an innovative approach for 

the breaking wave impact on a vertical wall, considering two impacted regions and a small air-pocket entrapped. In 

the latter study, the physical modelling was analogous to the former research, but the expansion of the velocity 

potential and the free-surface elevation in a perturbation series of 𝑡 (𝑡 is the time) allowed the split of the problem to 

several orders; the authors solved the first order problem.  

Here, a breaking wave idealized in a logical manner, as depicted in Fig. 1, is considered. The wave propagates 

from right to left with a steady velocity 𝑉 and hits violently the vertical wall. The water depth is assumed constant 

and equal to ℎ. During the collision, a small air-pocket, of negligible width (𝛿 → 0), is entrapped between the water 

and the wall and extends between −ℎ ≤ 𝑧 ≤ −𝑎. The hydrodynamic pressure in the air-pocket is assumed zero and 

no change in its volume is considered. The free-surface elevation at a random time instant, just after impact, is denoted 

by 𝐻 ≡ 𝐻(𝑥, 𝑡).  

The novelty of our work is characterized mainly by two particular features: 1) we investigate the higher order 

phenomena connected to a breaking wave impact on a vertical wall and 2) the higher order boundary value problem 

reduces to a challenging Sturm-Liouville problem with complicated, infinite series-like boundary conditions, which 

hold in the two different sections of the wall, i.e., the impacted region and the air-pocket.  

 
Fig. 1. Schematic representation for the 2D breaking wave impact on a vertical wall 

 

2. The mixed boundary value problem 

The problem is considered in its nondimensional form using the following variables  

�̃� =
𝑥

ℎ
, �̃� =

𝑧

ℎ
 , �̃� =

𝑎

ℎ
, 𝐻 =

𝐻

ℎ
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𝜙
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ℎ

𝑉
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𝑡

𝑇
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𝑝

𝜌𝑉2
, 

where 𝑎 is the upper point of the air pocket, 𝜙 denotes the velocity potential, 𝑡 is the time and 𝑇 is the time scale of 

the problem, 𝑝 is the hydrodynamic pressure and 𝜌 is the water density. We investigate the impact in the very early 

stages where 𝑡 → 0. We assume inviscid, incompressible fluid and irrotational flow, so that the fluid flow caused by 

the impact can be described using linear potential theory. The governing set of equations is 

 ∇2�̃� = 0, �̃� ≥ 0, −1 ≤ �̃� ≤ 0, (1) 

 

 
𝜕�̃�

𝜕�̃�
= 1, �̃� ∈ 𝐼1, −�̃� < �̃� ≤ 0, �̃� = 0, (2) 

 

 
𝜕�̃�

𝜕�̃�
= 0, �̃� ∈ 𝐼2, −1 ≤ �̃� < −�̃�, �̃� = 0, (3) 

 

 
𝜕�̃�

𝜕�̃�
= 0, �̃� = −1, �̃� ≥ 0, (4) 
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𝜕𝐻

𝜕�̃�
=

𝜕�̃�

𝜕�̃�
, �̃� = �̃�, �̃� ≥ 0, (5) 

 

 
𝜕�̃�

𝜕�̃�
+

𝑔ℎ

𝑉2
�̃� = 0, �̃� = 𝐻, �̃� ≥ 0, (6) 

 

 �̃� → 0, �̃� → ∞, −1 ≤ �̃� ≤ 0. (7) 

 

In the following we omit the tilde. Conditions (5) and (6) hold on the a priori unknown boundary 𝐻. We, therefore, 

apply a Taylor series expansion in accord with the hydrodynamics of regular surface waves. Hence, Eqs. (5) and (6) 

become  

 

 
𝜕𝐻

𝜕𝑡
=

𝜕𝜙

𝜕𝑧
+ 𝐻

𝜕2𝜙

𝜕𝑧2
+ ⋯ , 𝑧 = 0, 𝑥 ≥ 0, (8) 

 

 
𝜕𝜙

𝜕𝑡
+

𝜕𝐻

𝜕𝑡

𝜕𝜙

𝜕𝑧
+ 𝐻

𝜕2𝜙

𝜕𝑧𝜕𝑡
+ ⋯ +

𝑔ℎ

𝑉2
𝐻 = 0, 𝑧 = 0, 𝑥 ≥ 0. (9) 

 

Letting 𝑡 be the small parameter of our perturbation analysis, we write  

 

 𝜙 = 𝑡𝜙1 + 𝑡3𝜙3 + ⋯, (10) 

 

 𝐻 = 𝑡2𝜂2 + 𝑡4𝜂4 + ⋯. (11) 

 

Introducing Eqs. (10) and (11) in (8) and (9) and equating terms of like powers of 𝑡, we obtain the following higher 

order mixed boundary value problem (the first order problem is omitted) 

 

 ∇2𝜙3 = 0, 𝑥 ≥ 0, −1 ≤ 𝑧 ≤ 0, (12) 

 

 
𝜕𝜙3

𝜕𝑥
= 0, 𝑧 ∈ 𝐼1, −𝑎 < 𝑧 ≤ 0, 𝑥 = 0, (13) 

 

 𝜙3 = 0, 𝑧 ∈ 𝐼2, −1 ≤ 𝑧 < −𝑎, 𝑥 = 0, (14) 

 

 
𝜕𝜙3

𝜕𝑧
= 0, 𝑧 = −1, 𝑥 ≥ 0, (15) 

 

 𝜙3 = −𝜂2

𝜕𝜙1

𝜕𝑧
−

𝑔ℎ

3𝑉2
𝜂2, 𝑧 = 0, 𝑥 ≥ 0, (16) 

 

 𝜙3 → 0, 𝑥 → ∞, −1 ≤ 𝑧 ≤ 0. (17) 

 

The nonlinear wave elevation is obtained from the kinematical condition (8), after equating powers of 𝑡3. This reads 

 

 𝜂4 =
1

4

𝜕𝜙3

𝜕𝑧
+

1

4
𝜂2

𝜕2𝜙1

𝜕𝑧2
. (18) 

 

The form of the solution that satisfies initially Eqs. (15) and (16), provided that 𝑔′(−1) = 0 and 𝑔(0) = 1, is  

 

 𝜙3 = −𝑓(𝑥)𝑔(𝑧) + ∑ 𝐹𝑛(𝑥) sin(𝜆𝑛𝑧),

∞

𝑛=1

 (19) 

 

where  

 

 𝑓(𝑥) = 𝜂2

𝜕𝜙1

𝜕𝑧
+

𝑔ℎ

3𝑉2
𝜂2. (20) 

 

Further, by exploiting a useful relation from Gradshteyn and Ryzhik (2007) we define 
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 𝑔(𝑧) =
4

𝜋
∑(−1)𝑖−1

cos[(2𝑖 − 1)𝜋𝑧]

2𝑖 − 1

∞

𝑖=1

. (21) 

 

We introduce Eq. (19) in the Laplace equation and we employ the orthogonality property of sin(𝜆𝑛𝑧) in −1 ≤ 𝑧 ≤
0. Moreover, by attempting to satisfy the Neumann and Dirichlet boundary conditions of Eqs. (13) and (14) as well 

as the far field condition (17), it follows that   

 

 𝐹𝑛
′′(𝑥) − 𝜆𝑛

2 𝐹𝑛(𝑥) = 𝑆𝑛(𝑥), 0 ≤ 𝑥 < ∞, (22) 
 

 ∑ 𝐹𝑛
′(0) sin(𝜆𝑛𝑧)

∞

𝑛=1

= 𝑓′(0)𝑔(𝑧), −𝑎 < 𝑧 ≤ 0, (23) 

 

 ∑ 𝐹𝑛(0) sin(𝜆𝑛𝑧)

∞

𝑛=1

= 𝑓(0)𝑔(𝑧), −1 ≤ 𝑧 < −𝑎. (24) 

 

 𝐹𝑛(𝑥) → 0, 𝑥 → ∞. (25) 
 

 

where 

 

 𝑆𝑛(𝑥) = 2 ∫[𝑓′′(𝑥)𝑔(𝑧) + 𝑓(𝑥)𝑔′′(𝑧)] sin(𝜆𝑛𝑧) 𝑑𝑧

0

−1

. (26) 

  

and 𝜆𝑛 = (𝑛 −
1

2
) 𝜋.  

Eqs. (22)-(25) determine a novel and challenging one-dimensional, boundary value, Sturm-Liouville problem 

with mixed conditions. To the authors’ best knowledge, relevant problems have not been investigated in the past, at 

least in the field of analytical hydrodynamics associated with slamming phenomena.  

 

3. The exact solution of the one-dimensional Sturm-Liouville problem 

Typically, Sturm-Liouville problems are solved by means of the governing Green’s function. The Green’s 

function must satisfy the homogenous form of Eq. (22), must be continuous at 𝑦 = 𝑥 and the derivative exhibits a 

discontinuity (jump singularity) at the same point. For more details, the reader can refer to the book of Chatjigeorgiou 

(2018) [p. 111]. However, we follow a different approach in this study. A proper solution for the unknown function 

𝐹𝑛(𝑥), which encompasses the homogenous and the particular solution, can be written as 

 

 𝐹𝑛(𝑥) = 𝐴𝑛𝑒−𝜆𝑛𝑥 −
1

2𝜆𝑛

{∫ 𝑒−𝜆𝑛(𝑥−𝜉)𝑆𝑛(𝜉)𝑑𝜉 + ∫ 𝑒−𝜆𝑛(𝜉−𝑥)𝑆𝑛(𝜉)𝑑𝜉

∞

𝑥

𝑥

0

}, (27) 

 

Eq. (27) satisfies the Laplace equation and secures convergence as 𝑥 → ∞. Substituting Eq. (27) in the boundary 

conditions (23) and (24) yields the following BVP of mixed type 

 ∑ 𝜆𝑛𝐴𝑛 sin(𝜆𝑛𝑧)

∞

𝑛=1

= 𝛨1(𝑧) = −𝑓′(0)𝑔(𝑧) −
1

2
∑ ∫ 𝑒−𝜆𝑛𝜉𝑆𝑛(𝜉)𝑑𝜉

∞

0

sin(𝜆𝑛𝑧)

∞

𝑛=1

, −𝑎 < 𝑧 ≤ 0, (28) 

 

 ∑ 𝐴𝑛 sin(𝜆𝑛𝑧)

∞

𝑛=1

= 𝛨2(𝑧) = 𝑓(0)𝑔(𝑧) +
1

2
∑

1

𝜆𝑛

∫ 𝑒−𝜆𝑛𝜉𝑆𝑛(𝜉)𝑑𝜉

∞

0

sin(𝜆𝑛𝑧)

∞

𝑛=1

, −1 ≤ 𝑧 < −𝑎. (29) 

 

The mixed BVP of Eqs. (28) and (29) must be solved in terms of the unknown expansion coefficients 𝐴𝑛. The solution 

is given explicitly by Sneddon (1966) [p. 158]. However, the authors remarked an inaccuracy in the converge of the 

infinite series, when following directly the methodology dictated by Sneddon. Nevertheless, an alternative approach 

for the system of Eqs. (28) and (29) was required.  
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4. Some numerical results 

The calculation of the expansion coefficients 𝐴𝑛 for the higher order velocity potential, requires the computation 

of the first order solution. Nevertheless, a fast convergence of the solution is demonstrated in Fig. 2. An oscillatory 

behavior around zero is observed for 𝑛 ≤ 30, which vanishes thereafter. This, therefore, allows us a proper and 

careful truncation of the infinite series. In Fig. 3, the higher order velocity potential on the wall for different air-

pocket positions is depicted. It is interesting to observe the change in the sign of the potential. This remark manifests 

that the first order solution overestimates the potential (and consequently the hydrodynamic pressure) in the upper 

part of the wall, while it underestimates it in a region extending from the half of the height of the wall till the upper 

point of the air-pocket. The latter is more intense as the air-pocket shrinks. From Fig. 4, the main outcome is that an 

increase in the impact velocity yields smaller values of the potential. That implies that the first order solution is more 

accurate for larger impact velocities, yet correction is needed when the impact velocities are rather small. In both 

cases, one should notice the non-zero value of the potential at the free surface, as prescribed by the condition (16). 

Finally, it has been observed that the higher order free-surface elevation obtains negative values, which implies that 

the first order solution overestimates the free-surface elevation. 

 
Fig. 2. The expansion coefficients 𝐴𝑛. Here 𝑉 = 3 m/s and the air-pocket extends between −1 ≤ 𝑧 ≤ −0.8. 

 
Fig. 3. The higher order velocity potential on the wall, 

for several air pocket positions. Here, 𝑉 = 3 m/s. 

 
Fig. 4. The higher order velocity potential on the wall, 

for several impact velocities. Here, the air pocket 

extends between −1 ≤ 𝑧 ≤ −0.8.  
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