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1 Introduction

We proposed a 2D high-order immersed-boundary adaptive harmonic polynomial cell (IB-AHPC) method
for solving fully-nonlinear wave-structure interaction problems based on potential-flow theory. Unlike the
methods using overlapping grids [4] or irregular cells [13], standard adaptive square cells are used in the fluid
domain and at the boundaries to reduce the total number of unknowns without losing accuracy and to make
the method simpler for implementation. Another known issue, namely the spurious pressure oscillations on
moving structures induced by employing the immersed boundary method (IBM), is resolved in this study
by solving a separate boundary value problem (BVP) for a Lagrangian acceleration potential. In contrast,
solving a similar BVP for the corresponding Eulerian acceleration potential is far less satisfactory due to the
involved second derivatives of the velocity potential in the body-boundary condition, which are very difficult
to calculate accurately in an IBM-based approach. The accuracy and robustness of the proposed IB-AHPC
method are demonstrated by solving a radiation problem of a harmonically heaving circular cylinder at the
free surface in large motions and at high frequencies.

We also conducted an in-depth investigation on the low-pass filters applied on the free surface. To
eliminate saw-tooth instabilities, typically, off-centered selective filters (SFs) are used close to the ends of
the free surface and centered Savitzky–Golay (SG) filters are applied elsewhere. Our analyses show that
care should be taken when applying off-centered SFs close to the waterline due to the presence of evanescent
modes. An optimized 13-point, 10th-order filter is also proposed and implemented in our study. Different
from the classical SG(13,10) filter, this optimized filter is able to completely eliminate the saw-tooth waves
with wave length of 2∆x, where ∆x represents the horizontal grid resolution on the free surface.

2 Lagrangian acceleration potential method for the IB-AHPC

The Harmonic Polynomial Cell (HPC) method was originally proposed by Shao and Faltinsen [8, 9]
to solve the Laplace equation. In this work, to reduce the total number of cells without losing accuracy,
adaptive quad-tree cells are employed close to the free-surface and structure boundaries. As shown in Fig. 1,
the free surface and the body boundary are treated as immersed boundaries, and all colored nodes will be
imposed with corresponding conditions. The basics of the HPC method will not be presented here, and
interested readers are referred to [4, 8, 9]
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Figure 1: Snapshot of adaptive Cartesian grid system for a forced heaving circular cylinder at the free surface.

The hydrodynamic pressure on structures can be calculated by the Bernoulli’s equation p = −ρ(ϕt +
1
2 |∇ϕ|

2 +gz), where ϕt is the time derivative of the velocity potential, also called the acceleration potential.
Since ϕt also satisfies the Laplace equation, it can be obtained by solving another separate BVP. In the
Eulerian acceleration method (EAPM), the corresponding body-boundary condition is given as [14]

∂ϕt

∂n
= (U̇c + ω̇c × r) · n + (ωc × n) · (Uc −∇ϕ)− (Uc + ωc × r) · (n · ∇)∇ϕ, (1)
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where U̇c is the translating acceleration of the moving body and ω̇c is the angular acceleration about the
rotation center. We denote this by EAPM since an Eulerian description is implied in this approach. As
the IBM is used, the EAPM still introduces spurious oscillations. In contrast, the Lagrangian acceleration
potential method (LAPM) [3], works excellently in eliminating spurious oscillations. A generalized material
derivative of the velocity potential is defined as:

Ψ =
Dϕ

Dt
=
∂ϕ

∂t
+ V · ∇ϕ, (2)

where Dϕ/Dt denotes the time derivative of ϕ following a point that moves with the rigid-body velocity
V = Uc + ωc × r. Ψ(x, z, t) satisfies the Laplace equation, so that we can define a BVP for Ψ in the same
way as the velocity potential. On the free surface, the Dirichlet boundary condition is given as:

Ψ = V · ∇ϕ− 1

2
|∇ϕ|2 − gη. (3)

At a moving body surface, the body-boundary condition is given as:
∂Ψ

∂n
= V̇ · n + V · (ωc × n). (4)

By comparison, this boundary condition for Ψ is simpler than that for the Eulerian acceleration potential in
Eq. (1). In contrast to Eq. (1), Eq. (4) does not involve any derivatives of the velocity potential. This was
seen to significantly improve the accuracy of the calculated hydrodynamic loads when using the IBM for a
moving body. Direct comparison between the EAPM and LAPM will be presented and discussed during
the workshop in detail.

3 Case study: Forced heaving of a circular cylinder in still water

The radiation problem of a semi-submerged circular cylinder harmonically heaving on the free surface
is considered here to test the capability of this numerical model for simulating wave-body interaction.
The center of cylinder is initially placed at the undisturbed free surface in the middle of the numerical
water wave tank. The radius of the cylinder is R = 0.1m and the non-dimensional heaving amplitude is
σheave = ηa/R = 0.2. The heave motion is given as ηheave(t) = −ηa sinωt. The length of the wave tank is
ten times the wavelength Ltank = 10λ, and the considered water depth is larger than half of the wavelength
and set to be h = 15R. Here the wavelength λ is found by the linear dispersion relation. A ramp function
is applied to gradually start the motion within tramp = 4T , where T is the wave period.
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Figure 2: Heaving added mass and damping coefficients, normalized mean Fourier force-component F
(0)
3 , second-order

heave force F
(2ω)
3 and third-order heave force F

(3ω)
3 for the cylinder. Here ρ is the fluid density, and S = 0.5πR2 is

the mean submerged area of the cylinder section.

A Fourier analysis is performed on the time history of heaving force on the cylinder to determine the

hydrodynamic added mass A33 and the damping B33, the mean heave force F
(0)
3 , the second-order heave

force component F
(2ω)
3 and the third-order heave force F

(3ω)
3 for non-dimensional frequency ω2R/g ranging

from 0.2 to 2.0. They are presented in Fig. 2 in normalized form. In the plot of A33 and B33, the theoretical
solutions of [12], the Boundary Element Method (BEM) results of [10], experimental results from [15] are

compared with our IB-AHPC method. In the plot of F
(0)
3 and F

(2ω)
3 , the theoretical results of [6], fully-

nonlinear BEM results of [11], experimental measurements of [12] and the present numerical solutions are

compared. In the plot of F
(3ω)
3 , the present results are compared with the experiments of [15] and the

fully-nonlinear results based on Finite Difference Method (FDM) results of [5]. In spite of small deviations,
our present numerical solutions are globally in good agreement with the reference solutions. The most
inspiring thing is that our numerical model is capable of computing cases with non-dimensional frequency
up to ω2R/g = 2.0.



4 Low-pass filters on the free surface

It is known that off-centered SG filters [7] tend to amplify some wave components rather than suppress
them [2]. To overcome this problem, the Selective Filters (SFs) developed in [1] can be applied to treat
boundary problems without amplification at any wavelength. In the radiation problem, we found the SFs
have influence on both the propagating waves and the evanescent wave modes near the cylinder. To get some
insights on the effect of SFs, in particular on the evanescent modes, we use the linear analytical solution
of a piston-type wavemaker to study the amplification portraits of different SFs presented in [1]. Taking
the sum of the first three evanescent modes for example, Fig. 3 demonstrates the amplification portraits of
the SFs for the first three evanescent wave modes, where the selective filters are referred as SF(a, b). Here
a and b are the number of points to the left and to the right respectively. and N denotes the number of
points per wavelength of the corresponding propagating wave. A∗ and A denote the total amplitude after
and before filtering respectively. The filtered data f∗(xi) is expressed as a convolution of the original data
f(xi) as f∗(xi) = f(xi)−α

∑b
j=−a djf(xi + j∆x), where dj is the SF(a,b) coefficient at stencil point j. Here

an intensity parameter α (0 ≤ α ≤ 1) has been introduced to control the strength of the selective filter.
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Figure 3: Amplification portraits of the selective filters from Berland et al. [1] for evanescent wave modes close to a

piston wavemaker, α = 1.
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Figure 4: Comparison of original SG(13,10) filter and optimized WLS(13,10) filter.

The left plot in Fig. 3 indicates that the SF(0, 3) filter is the most dissipative for the evanescent modes
comparing with other SF filters. The SF(1, 5) filter amplifies the amplitude, while all other filters exhibit
a damping effect. In order to explicitly display differences of these filters, the amplification portrait is
plotted in log scale in Fig. 3 (right). It can be seen that the amount of dissipation by the SF(0, 3) filter is
100 times larger than other filters. As the motion of the wavemaker increases in frequency and amplitude,
stronger non-linearity of generated waves is expected. Given that the evanescent modes are more sensitive
to the SF(0, 3) filter than the other filters, a smaller strength parameter α is needed for the SF(0, 3) filter
to stabilize the computation without introducing too much dissipation to the higher-order wave harmonics.

Numerical instability occurs commonly with saw-tooth waves of around 2∆x wavelength. The original
SG(13,10) filter is not able to completely damp those short wave components. In the present study, a new
13-point 10th-order filter based on an optimized weighted least square (WLS) method has been applied. For
brevity, we refer this filter as WLS(13,10). As shown in Fig. 4 (left), the WLS(13,10) filter is capable of
eliminating undesired wave noise at wave number k0 = π/∆x. The right of Fig. 4 also shows the dissipation
of wave amplitude when k = k0 for both the SG(13,10) and the WLS(13,10) filter. The coefficients in
f∗(xi) =

∑b
j=−a djf(xi + j∆x) for the WLS(13,10) filter are given in Table. 1. Note however, that the WLS

filter only works on the free surface away from the boundaries, as the same as the SG filter. That means,
in our work, we still have to apply the SFs near the boundaries.



Table 1: Coefficients for the optimized WLS(13,10) filter.

d−6(d6) = −2.44363800E − 04 d−5(d5) = +2.93236558E − 03 d−4(d4) = −1.61280107E − 02

d−3(d3) = +5.37600357E − 02 d−2(d2) = −1.20960080E − 01 d−1(d1) = +1.93536129E − 01

d0 = +7.74207850E − 01
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Figure 5: Non-dimensional heave force on cylinder for frequency ω2R/g = 1.0 (first row) and for ω2R/g = 1.61 (second

row), with three grid refinements (coarse, medium and fine grid) and three strength parameters (α = (0.25, 0.50, 1.00)).

Two cases with non-dimensional frequency ω2R/g = (1.0, 1.61) are chosen to investigate the influence
of the strength parameter α of the selective filter on output results, shown in Fig. 5. Three grid refinements,
i.e. R/∆x = (10, 13, 20), and three values of the strength parameter, i.e. α = (0.25, 0.50, 1.00) are tested.
Here, same value of α is applied to all selective filters on different locations of the free surface. It is obvious
that the case with ω2R/g = 1.61 is much more nonlinear than the one with ω2R/g = 1.0. If we assume that
the result with α = 0.25 is the converged solution due to smaller dissipation induced, then we can expect
that the force amplitude will reduce with increased filtering strength. The reduction is slight for case with
ω2R/g = 1.0, especially for the fine grid, which suggests the results are less sensitive to the α values in the
case of weaker non-linearity. However, for the case with ω2R/g = 1.61 on the fine grid, the time series of
force deforms at the main and secondary troughs if α = 1.00 is applied. This implies that, to accurately
predict wave forces on structures when the non-linearity is strong, it is wise to use an appropriately small
α. Several tests have been performed to suggest that α = 0.25 is a reasonable choice for all frequencies
displayed in Fig. 2. Note that we also tried smaller α, e.g. 0.1, but the computation requires much smaller
time steps to produce stable solutions, which showed negligibly small differences with those using α = 0.25.
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