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1 INTRODUCTION

At present, the problem of the generation of flexural-gravity waves (FGW), when a localized region
of external pressure moves along an ice cover floating on the surface of a fluid, has been sufficiently
studied. The moving load might be an ordinary car, a taking off or landing aircraft, or an air-
cushion vehicle (ACV). The rectilinear motion of the load was studied in detail in both steady and
unsteady cases. A rich bibliography can be found in [1-3]. The ice cover was usually modelled by an
initially unstressed, homogeneous isotropic thin elastic plate. However, the ice sheet can experience
compression or stretching due to the action of wind, currents or thermal deformations. Three types
of compressive forces are possible in 3-D problem: longitudinal, transverse and shear forces [4]. The
kinematic properties of FGW arising from periodic and impulse disturbances under conditions of
uniform and non-uniform compression forces were studied in detail in [5]. The time-response of a
floating flexible plate to the periodic and pulse impact of a distributed load is considered in [6].

This paper presents a solution to a linear 3-D unsteady problem of hydroelasticity on the devel-
opment of wave motion arising at an instantaneous start and subsequent uniform rectilinear motion
of the external load along the ice cover. It is assumed that the load is uniformly distributed in a
rectangular area, which simulates the movement of ACV. For an ice cover, longitudinal, transverse
and shear compressive forces are taken into account.

2 MATHEMATICAL FORMULATION

We considered an infinitely extended ice cover of constant thickness h and density ρ1 floating on the
surface of an ideal incompressible fluid of depth H. The fluid and the plate is initially unperturbed.
Starting from the moment of time t = 0, the given localized external pressure acts on the plate, which
then moves rectilinearly with constant speed U . The coordinate system x, y, z associated with the
moving pressure is introduced, where x and y are horizontal coordinates, and z is a vertical coordinate
pointing upwards. The x−axis coincides with the direction of load movement. The resulting fluid flow
is assumed to be potential, and the velocity of fluid particles and plate deflection are assumed to be
small. It is assumed that at all time values the fluid is in contact with the plate.

The velocity potential ϕ(x, y, z, t) satisfies the Laplace equation

∆ϕ + ∂2ϕ/∂z2 = 0 (|x|, |y| < ∞, −H ≤ z ≤ 0), ∆ ≡ ∂2/∂x2 + ∂2/∂y2 (1)

with boundary conditions
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∇ϕ = 0 (t ≥ 0) (r2 = x2 + y2), (4)

and initial conditions
ϕ(x, y, z, 0) = w(x, y, 0) = 0. (5)

Here, w(x, y, t) is the deflection of the ice cover, D = Eh3
1/[12(1 − ν2)], M = ρ1h; E is Young’s

modulus, ν is Poisson’s ratio of the ice plate; Q1, Q2, Q3 are the longitudinal, transverse and shear
compressive forces, respectively; ρ is the fluid density, P (x, y, t) is the external pressure. It is assumed



for simplicity that the function P (x, y, t) is nonzero only for t > 0 in the rectangle of length 2a and
width 2b. Inside this rectangle, the pressure is constant

P (x, y, t) = P0 (|x| ≤ a, |y| ≤ b, t > 0). (6)

Using the Fourier transform, the solution to the problem (1) - (6) has the form
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kB(k)[Dk4 − Q(θ)k2 + ρg], B(k) = [Mk + ρ cth(kH)]−1, (9)

Q(θ) = Q1 cos2 θ + Q2 sin2 θ + Q3 sin(2θ), C(k, θ) = sin(ak cos θ) sin(bk sin θ)/(sin θ cos θ).

The function ω(k, θ) in Eq. (9) is the dispersion relation for FGW. For the existence of a real
frequency value, it is necessary that for all possible values of θ the radicand in Eq. (9) be non-negative.
This condition is fulfilled under the condition that Q(θ) ≤ 2

√
gρD for 0 ≤ θ ≤ π.

The hydrodynamic forces acting on ACV during its movement over the ice cover consist of wave
resistance Rx and side force Ry:
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Using the solution (7), we have
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According to relation (8), the side force is zero in the absence of shear compressive force in the ice
cover since in this case ω+ = ω−.

3 STEADY WAVE MOTION

Consider the behavior of wave motion in a steady state, i.e., as t → ∞. In this case, in a moving
coordinate system, the problem becomes stationary, with the exception of some values of speed U ,
called critical [1,2]. For simplicity, we restrict ourselves to considering an infinitely deep fluid (H → ∞).
The velocity potential ϕ(x, y, z) satisfies the Laplace equation (1) with the boundary conditions
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In the far-field zone, the radiation condition is required, which means that waves propagating upstream
can be only in the case when their group velocity is greater than the speed of the load, otherwise wave
motions exist only downstream.

Using the Fourier transform, we obtain a solution for the deflections of the ice cover
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where
Z±(k, θ) = Dk4 − Q±k2 + gρ − kU2 cos2 θ(ρ + kM), Q± = Q(±θ).

The functions Z±(k, θ) are the polynomials of the fourth degree in k and for some values of θ
they have real positive roots k±
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(θ)). In this case, the inner integral

in Eq. (12) is calculated in the sense of the principal value and taking into account the radiation
condition in the far field, residues at the singular points should be added. It is well known [1,2] that
the group velocity of waves is greater that their phase velocity for shorter flexural waves and less for
long gravity-dominated waves. Therefore, for the first term in the inner integral (12), it is necessary
to calculate
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where the symbols pv denote the integral in the sense of the principal value. Similar expressions take
place for the second term in the inner integral (12) for those values of θ for which the polynomial
Z−(k, θ) has two positive roots.

It is known [5,7] that there is a critical speed of load motion Uc such that when the load moves with
speed U < Uc, no wave motions generate in the far-field zone. For infinitely deep fluid, the following
relations hold:

Uc = Ψ(kc), dΨ(k)/dk|k=kc
= 0,

where
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The definition of kc is reduced to calculating the positive root of the 13th degree polynomial.
The wave force acting on the load in the steady problem are calculated by formulas similar to Eq.

(10). These forces differ from zero only when the load moves with supercritical speed U > Uc as they
are determined by the contributions from residues at singular points of the inner integral in Eq. (12).
Let us denote the interval of values of the angular coordinate θ for the singular points of the function
Z+(k, θ) as γ+
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where the values Cx(k, θ), Cy(k, θ) in Eq. (11) are used.
When the load moves along the elastic plate at an angle β to the x-axis, the problem should be

considered in a new coordinate system x′, y′, z, where

x′ = x cos β + y sinβ, y′ = y cos β − x sinβ.

In the new coordinate system, the values of the longitudinal, transverse and shear compressive forces
are equal to [5,7]

Q′

1 = Q1 cos2 β + Q2 sin2 β + Q3 sin(2β),

Q′

2 = Q1 sin2 β + Q2 cos2 β − Q3 sin(2β),

Q′

3 = (Q2 − Q1) sin(2β)/2 + Q3 cos(2β).

The dependence of the critical speed Uc and dimensionless compression parameters qj ≡ Qj/
√

gρD
(j = 1, 2, 3) on the angle of rotation β is shown in Fig. 1(a). Curves 1 and 2 correspond to the values
Uc at h = 1m and h = 2m, respectively. The following input data are used: E = 5 · 109 Pa, ρ =
1025kg/m3, ρ1 = 922.5kg/m3, ν = 0.3, (q1, q2, q3) = (1.5, 1.2, 0.6), P0 = 103 Pa, a = 20m, b = 10m.
The dimensionless values of wave resistance R̄x and side force R̄y depending on the load speed U for
the steady problem is shown at h = 1m in Fig. 1 (b),(c), respectively, where

(R̄x, R̄y) =
gρ

2bP 2
0

(Rx, Ry).

Curves 1-4 correspond to the values of the angle β = 0, 45, 90, 135◦. Curve 5 shows the wave
resistance at zero values of the compression parameters.

Figure. 1.

More detailed numerical results will be presented at the Workshop.
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