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1 INTRODUCTION

According to available data, up to 12% of the oceans and seas are covered with ice. Most of the ice
cover is found in the circumpolar regions, but during particularly cold winters the ice cover can deviate
significantly south in the Northern Hemisphere or north in the Southern Hemisphere. In many cases,
there are currents in the ocean beneath the ice cover. The currents can cause vibrations of pipelines
leading to the wave motion in the ice. At certain conditions, the instability can arise resulting in
the simultaneous growth of pipeline oscillations and flexural-gravity wave (FGW) amplitude in the
ice cover. Therefore, the problem of description of such a phenomenon is topical and important from
the practical point of view. It is also important to calculate the hydrodynamic loads exerting on the
pipelines in the current in the seas or oceans covered by ice.
In this paper we examine in detail the effect of floating ice cover on the hydrodynamic loads exerting
on the translationally moving and oscillating circular cylinder. In the linear approximation, we find a
solution for the steady wave motion generated by the cylinder within the hydrodynamic set of equa-
tions for the incompressible ideal fluid of infinite depth. We show that depending on the rate of ice
compression, the normal and anomalous dispersion can occur in the system. In the latter case, the
group velocity can be opposite to the phase velocity in a certain range of wavenumbers. We investigate
the dependences of hydrodynamic loads (the added mass, damping coefficients, wave resistance, and
lift force) exerting on the cylinder on the translational velocity and frequency of oscillation. It is
shown that there is a possibility of the appearance of negative values for the damping coefficients at
the relatively big cylinder velocity; then the wave resistance decreases with increasing of the cylinder
velocity. The negative damping coefficients, apparently, was obtained for a first time by Newman
(1961) when he calculated the hydrodynamic loads exerting on an ellipsoid uniformly moving under
the free surface of a homogeneous fluid and simultaneously oscillating along one of six possible de-
grees of freedom. The theoretical results are underpinned by the numerical calculations for the real
parameters of ice and cylinder motion.

2 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

We consider a circular cylinder of a radius a (a pipeline, for example) flowing around by a uniform
current with the velocity U = −U∇x in an ideal incompressible fluid of the density ρ. The cylinder
oscillates in the horizontal and vertical directions with the frequency Ω. We assume that the water is
infinitely deep containing an ice cover on the top, can be modelled by a thin elastic plate. The main
set of hydrodynamic equations and boundary conditions describing FGWs in the linear approximation
is as follows. For the velocity potential Φ(x, y, t) we have the Laplace equation:

∆Φ ≡ ∂2Φ

∂x2
+
∂2Φ

∂y2
= 0 (|x| <∞, −∞ < y ≤ 0), (1)

where the fluid velocity u = ∇Φ.



It is assumed that the lower boundary of the ice plate is always in contact with the water. By denoting
through the w(x, t) the vertical displacements of the ice cover from the undisturbed flat position, the
kinematic and dynamic conditions at the upper boundary of the fluid (at y = 0) can be written as:
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The notations used here are standard and can be found, for example, in the recent publication (Stepa-
nyants & Sturova, 2021a). It is assumed that all perturbations vanish in the bulk of the fluid so that
for both components of fluid velocity we have: ∇Φ→ 0, when y → −∞.
The dispersion relation ω(k), the phase cp(k), and group cg(k) velocities FGWs are as follows:
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As well-known, the dispersion relation ω(k) imposes a restriction on the maximal value of the com-
pression force. The stability of oscillations of a floating ice plate is guaranteed by the condition
Q < Q∗ ≡ 2

√
g ρD, whereas at Q > Q∗ the buckling phenomenon occurs – the ice plate shatters.

There is one more critical value of the parameter Q such that for Q < Q0 < Q∗ the group velocity
of FGW is positive for all wavenumbers k ≥ 0 (the case of the normal dispersion). In the interval
Q0 < Q < Q∗, the group velocity is negative in a certain interval of wavenumbers (the case of the
anomalous dispersion) – the details can be found in (Stepanyants & Sturova, 2021a, 2021b).
In this paper, we study a steady regime of fluid motion caused by the translationally moving and
oscillating cylinder. In this case, the total potential of fluid velocity can be presented in the form:

Φ(x, y, t) = −Ux+ Uϕ(x, y) + Re

2∑
j= 1

ηjϕj(x, y)eiΩ t, (4)

where ϕ is the velocity potential corresponding to the uniform motion of the body with the unit
velocity, ϕj (j = 1, 2) are the radiation potentials due to the cylinder oscillation in the horizontal
(j = 1) and vertical (j = 2) directions, ηj are the amplitudes of cylinder vibrations in these directions.
Similarly to Eq. (4), the vertical displacements of the ice plate can be presented as:

w(x, t) = w(x) + Re

 2∑
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ηjwj(x)eiΩ t

 . (5)

The stationary part of the total potential ϕ satisfies the Laplace equation in the fluid: ∆ϕ = 0 (|x| <
∞, −∞ < y ≤ 0) with the boundary conditions at y = 0:
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The boundary conditions far from the source are as follows:
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→ 0 (y → −∞),

∂ϕ
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where functions ψ±(x, y) are equal to zero if the current speed U is less than the minimal phase speed
of FGWs (cp)min. If U > (cp)min, than functions ψ±(x, y) represent stationary waves when x→ ±∞.
On the circular contour S : x2 + (y + h)2 = a2 which represents the surface of the rigid cylinder, the
impermeability condition is posted: ∂ϕ/∂n = n1 (x, y ∈ S), where n = (n1, n2) is the inner normal to
the contour S, and h is the distance of the cylinder center from the upper boundary of the fluid.
The components of radiation potentials also satisfy the Laplace equation: ∆ϕj = 0 (|x| <∞, −∞ <
y ≤ 0) and the boundary conditions at y = 0:
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where the operator Λ = iΩ− U∂/∂x. The boundary condition on the cylinder circular contour is:

∂ϕj
∂n

= iΩnj − Umj (x, y ∈ S), where (m1, m2) = ∇(∂ϕ/∂n). (9)

In the far-field zone when x → ±∞, wave perturbations consist of superposition of several periodic
waves [the details can be found in (Stepanyants & Sturova, 2021b)].
The hydrodynamic forces F = (F1, F2) exerting on the cylinder, are determined by integrating the
fluid pressure (less the hydrostatic term) p = −ρ (∂Φ/∂t + |∇Φ|2/2) along the contour S. It is
convenient to replace this integral by the sum Fj = Fsj + Re

(
Frje

iΩ t
)

(j = 1, 2), where Fsj are
the stationary force components (the wave resistance and lift force) acting on a body in a stationary
uniform flow, whereas Frj are the radiation forces, which are usually written in the matrix form:
Frj = η1Tj1 + η2Tj2. The quantities Tjk (k = 1, 2) represent a complex force acting in the j-direction
and caused by sinusoidal oscillations of a body with a unit amplitude in the k-direction; they can be
represented as Tjk = Ω2µjk − iΩλjk. The real quantities µjk and λjk are known as the added mass
and damping coefficients, respectively.
By introducing polar coordinates with the origin in the centre of the sylinder contour, we obtain the
expressions for the hydrodynamic forces (the symbol ∗ stands for complex conjugate):
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3 NUMERICAL RESULTS

To investigate quantitatively the effect of cylinder oscillation on the ice plate covered an infinitely
deep water and hydrodynamic forces exerting on the cylinder, we undertook numerical calculations
with the following set of parameters:

E = 5·109 Pa, ν = 0.3, ρ1 = 922.5 kg/m3, a = 5 m, h = 10 m, ρ = 1025 kg/m3, g = 9.81 m/s2. (11)

Several ice-plate thickness was chosen to study its influence on FGWs and the hydrodynamic char-
acteristics of the cylinder. The following dimensionless values of hydrodynamic forces were used:(
F s1, F s2

)
= (Fs1, Fs2) /

(
πρ g a2

)
. Figure 1 shows the dependence of stationary hydrodynamic forces

on the Froude number F = U/
√
g a for the several values of the normalised compression parameter

Q̃ ≡ Q/
√
ρ gD = 0, 1.2, 1.8, 1.95.

Figure 1: The wave resistance (a) and lift force (b) as functions of the Froude number F for different values of the

compression parameter Q̃ = 0, 1.2, 1.8, 1.95.

The radiation loads (the added mass and damping coefficients) for the fixed Froude numbers and
several compression parameters Q̃ were calculated as functions of frequency of cylinder oscillation Ω.
As the example Fig. 2 illustrates the dependence of the added mass µij = µij/ρ a

2 (i, j) = 1, 2

on the dimensionless frequency σ = Ω
√
a/g. The hydrodynamic loads smoothly depend on the



Figure 2: (Color online.) Dependence of the added mass coefficients: µij (i, j) = 1, 2 on the dimensionless frequency

of cylinder oscillation for Q̃ = 0, 1.2, 1.8, 1.95 and fixed Froude number F = 0.5. Crosses show the values of µ11 and µ22

for the fluid covered by a rigid lid.

oscillation frequency only when Q̃ = 0. In all other investigated cases of the compression parameter
Q̃ = 1.2, 1.8, 1.95, there are sharp changes in the values of the hydrodynamic loads in the vicinity
of the frequencies where the regime of motion is changed. The hydrodynamic loads in the vicinity
of these frequencies can significantly exceed the corresponding values for the uncompressed ice when
Q̃ = 0. For a given Froude number F = 0.5, the diagonal coefficients of the added mass matrix in the
cases of uncompressed ice and rigid cover practically coincide, they are indistinguishable in panels (a)
and (b) of Fig. 2.
More detailed analysis of theoretical and numerical results will be presented at the Workshop.

ACKNOWLEDGMENT

The work of Y.S. was supported by the grant number SPARC/2018–2019/P751/SL through the
Scheme for Promotion of Academic and Research Collaboration of the Ministry of Human Resource
Development, Government of India, by the grant No FSWE-2020-0007 provided by the State task
program in the sphere of scientific activity of the Ministry of Science and Higher Education of the
Russian Federation, and the grant number NSH-2685.2018.5 provided by the President of Russian
Federation for the State support of leading Scientific Schools of the Russian Federation.

REFERENCES

Newman, J. N., 1961. The damping of an oscillating ellipsoid near a free surface, J. Ship Res., 5(3),
44–58.

Stepanyants, Y. & Sturova, I., 2021a. Waves on a compressed floating ice plate caused by motion of
a dipole in water, J. Fluid Mech., 907, A7.

Stepanyants, Y. & Sturova, I., 2021b. Hydrodynamic forces exerting on an oscillating cylinder at its
translational motion in water covered by a compressed ice, Water, (submitted).


