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Highlights
• The comparison study is conducted between the direct pressure integration method (near-field) and the
momentum conservation approach (middle-field) based on both double-body and Neumann-Kelvin lin-
earizations for the evaluation of added resistance.

• The control surface in middle-field method is placed near the hull, and its truncation depth is determined
based on the decay of fluid velocities.

• The components and distribution of added resistance in different wavelengths are compared and discussed.

1 Introduction
The accurate prediction of added resistance is critical to ship design and hull form optimization, since it can
be up to 15∼30% of the calm water resistance. Moreover, according to the regulatory requirements referring to
Energy Efficiency Design Index (EEDI), the EEDI value should be reduced by 30% in comparison with phase 0
(2013∼2014) until year 2025. To correctly estimate this index, the accurate prediction of wave added resistance
is of great importance. In general, there are two major methods to compute the added resistance, i.e. near-field
method and far-field method. The former approach applies direct pressure integration over the mean wetted hull,
while the latter one employs the integration on a control surface in far field based on the momentum conservation
formulation (Maruo, 1960). The far-field approach is assumed to have better convergence performance than
the near-field method. Besides, there is no need to evaluate the second derivatives of the potential in far-field
method. Joncquez et al. (2012) studied the added resistance using AEGIR, and compared the results obtained
by the forementioned two methods. Later, Pan et al. (2016) adopted a new approach named middle-field
formulation by applying the momentum conservation principle to a near field volume surrounded by a control
surface not far away from the hull. It was shown that the middle-field approach has the same rapid numerical
convergence as the far-field method. However, there is little work on the comparison between near-field and
middle-field methods and this is the principal focus of this paper.

In the present study, a well-established three-dimensional time-domain seakeeping code (Zhang et al.,
2010a) employing desingularized source and panel methods is extended to study the added resistance problem.
The free surface boundary conditions are applied on the calm water surface, and the body boundary condition
is applied on the mean wetted hull surface. The seakeeping model is developed based on the linearizations
employing a double-body basis flow or a uniform flow. Both the near-field and middle-field methods are
adopted to compute the added resistance in head seas. The containership model S175 is used to validate the
proposed model by comparing with experimental data. The comparison is also conducted with the results of
body-exact strip theory (Subramanian & Beck, 2019) to analyze the effects of exact body boundary condition.
Furthermore, the components and distribution of added resistance are compared and discussed.

2 Mathematical formulation
The vessel is assumed to move with constant speed W⃗ = (U, 0, 0) in the presence of incident waves (the incident
wave amplitude is denoted as A), and may be undergoing unsteady oscillations in its six degrees of freedom.
Three right-handed coordinate systems are employed: the x0y0z0 system fixed in space, the xyz system fixed to
the mean position of the ship (translating with ship forward speed U along the straight track of the ship), and
the XYZ system fixed to the ship. The origin of xyz system is located at midship on the mean free surface.
The ship is assumed to be a rigid body, and the motion amplitude in translational modes, defined in the xyz
system, can be written as

δ⃗ = ξ⃗T + ξ⃗R × X⃗ (1)

where ξ⃗T and ξ⃗R are the translation vector (ξ1, ξ2, ξ3) and rotational vector (ξ4, ξ5, ξ6), respectively; X⃗ =
(X,Y, Z) denotes the location on the ship in the XYZ system.

The fluid is assumed to be ideal and the flow irrotational. In the xyz system, the velocity potential ϕ(x⃗, t)
can be introduced to describe the fluid motion such that the fluid velocity can be expressed as the gradient

of a potential function, V⃗ (x⃗, t) = ∇(−Ux + ϕ(x⃗, t)). The potential satisfies the nonlinear boundary value
problem (BVP) stated in Zhang et al. (2010a). The boundary conditions can be linearized using either a
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double-body basis flow or a uniform flow. These two different linearizations are called double-body (DB) and
Neumann-Kelvin (NK) linearizations, respectively. The velocity potential ϕ and the free-surface elevation η are
decomposed as follows

ϕ(x⃗, t) = Φ(x⃗) + ϕd(x⃗, t) + ϕI(x⃗, t) (2)

η(x, y, t) = η̄(x, y) + ηd(x, y, t) + ηI(x, y, t) (3)

where Φ, ϕd and ϕI denote the basis potential, disturbed wave potential and incident wave potential, respec-
tively; η̄, ηd and ηI denote the steady, disturbed and incident wave elevations, respectively. The basis potential
is assumed to be the main component and its order is O(1), while both disturbed and incident components and
their corresponding wave elevations are O(ϵ), where ϵ≪ 1 denotes a small quantity such as the slenderness of
the ship. The mean wave elevation is assumed to be small. By applying Taylor expansions for the instanta-
neous wave elevation around z = 0 and the wave-induced motions around the mean wetted hull surface SB̄ , the
linearized boundary conditions can be written as(

∂

∂t
−

(
W⃗ −∇Φ

)
· ∇

)
ηd =

∂2Φ

∂z2
(ηd + ηI) +

∂ϕd

∂z
−∇Φ · ∇ηI on z = 0 (4)(

∂

∂t
−

(
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)
· ∇

)
ϕd = −gηd −∇Φ · ∇ϕI on z = 0 (5)

∂ϕd

∂n
=

6∑
j=1

(
∂ξj
∂t

nj + ξjmj

)
− ∂ϕI

∂n
on SB̄ (6)

where n⃗ is the inward unit normal on the body surface in xyz system; nj denote the generalized normal vectors;
mj represent the m-terms including the effects of the interaction between the steady and unsteady flows.

By applying Green’s theorem, with employing desingularized sources above the calm water surface and
constant-strength panels on the hull, the velocity potential can be written as (Zhang et al., 2010b)

ϕ(x⃗) =
∑
NF

G(x⃗; x⃗′)σ(x⃗′) +

∫∫
SB̄

G(x⃗; x⃗′)σ(x⃗′)ds (7)

where G = 1/r(x⃗; x⃗′); σ is the source strength on the boundaries; NF is the number of desingularized sources
distributed above the calm water surface.

The body-exact strip theory is carried out in time domain and developed for maneuvering problem in waves.
The exact body boundary condition is applied on the instantaneous wetted hull surface. In addition, the radial
basis function is employed to compute all the x-derivatives and acceleration potential for ϕt terms. Besides, the
usual strip theory forward speed corrections are made to the potential flow solution and the viscous effects are
taken into consideration.

2.1 Near-field approach
By applying the Bernoulli’s equation and performing Taylor’s expansion for both hydrodynamic pressure and

instantaneous wetted body surface, the second-order force F⃗2 can be obtained

F⃗2 = −ρ

∫
WL

(
−W⃗ · ∇Φ+

1

2
∇Φ · ∇Φ

)
ηr ξ⃗R × N⃗dl − ρ

∫
WL

δ⃗ · ∇
(
−W⃗ · ∇Φ+

1

2
∇Φ · ∇Φ

)
ηrN⃗dl

+

∫
WL

1

2
ρgη2

rN⃗dl − ρ

∫∫
SB̄

[
HX⃗ · ∇

(
gZ − W⃗ · ∇Φ+

1

2
∇Φ · ∇Φ

)]
N⃗ds− ρ

∫∫
SB̄

gZHN⃗ds

−ρ

∫∫
SB̄

δ⃗ · ∇
[
∂(ϕd + ϕI)

∂t
− (W⃗ −∇Φ) · ∇(ϕd + ϕI)

]
N⃗ds− ρ

∫∫
SB̄

1

2
[∇(ϕd + ϕI) · ∇(ϕd + ϕI)] N⃗ds

−ρ

∫∫
SB̄

[
g (ξ3 + ξ4Y − ξ5X) +

∂(ϕd + ϕI)

∂t
− (W⃗ −∇Φ) · ∇(ϕd + ϕI)

]
ξ⃗R × N⃗ds

−ρ

∫∫
SB̄

(
−W⃗ · ∇Φ+

1

2
∇Φ · ∇Φ

)
HN⃗ds− ρg

∫∫
SB̄

[
δ⃗ · ∇

(
−W⃗ · ∇Φ+

1

2
∇Φ · ∇Φ

)]
ξ⃗R × N⃗ds (8)

where WL denotes the mean waterline; N⃗ is the unit normal vector into the hull in XYZ system; ηr is defined as
the relative wave elevation which accounts for the time-dependent instantaneous ship motion; H is the matrix of
transformation and its expression can be found in WAMIT (2016). The added resistance Raw can be obtained

by taking the average of the longitudinal component of F⃗2 with respect to time.

2.2 Middle-field approach
The momentum conservation principle is applied to a near field volume Ω bounded by a closed surface SΩ which
consists of the instantaneous free surface SF , the instantaneous wetted hull surface SB , the bottom surface S0

and the vertical control surface SCS . The control surface is near the hull and shares the same speed W⃗ with
ship. In the x0y0z0 system, the rate of change of linear momentum in the volume Ω is

dM⃗

dt
=

∫∫∫
Ω

ρ∇ϕdτ = ρ

∫∫∫
Ω

d

dt
∇ϕdτ + ρ

∫∫
SΩ

∇ϕ
(
W⃗SΩ · n⃗SΩ

)
ds (9)

where W⃗SΩ represents the velocity of the surface SΩ in the x0y0z0 system; n⃗SΩ denotes the unit normal vector
out of the surface SΩ. By applying the Galilean transformation, Eqn.(9) can be expressed in the xyz system as
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After employing the Euler equation, the first Green identity and divergence theorem, the expression of second-
order force can be written as

F⃗2(t) = −ρg

2

∫
Cd

(ηI + ηd)
2n⃗cdl − ρ

∫
Cd

[
∇Φ(∇ (ϕd + ϕI) · n⃗c) +∇(ϕd + ϕI)

(
(∇Φ− W⃗ ) · n⃗c

)]
(ηI + ηd) dl

ρ

2

∫∫
Sd

[∇(ϕd + ϕI) · ∇(ϕd + ϕI)] n⃗cds− ρ

∫∫
Sd

∇(ϕd + ϕI) [∇(ϕd + ϕI) · n⃗c] ds (11)

where n⃗c denotes the unit normal vector out of the control surface; Sd is the control surface truncated at a
finite depth; Cd is the intersection line of Sd with the z = 0 plane. It should be noted that, different from the
far-field method in which the control surface should be placed at least 3.5 times the incoming wavelength λ
away from the hull (Seo et al., 2013), the middle-field approach has no such strict requirement for the size of
computational domain, since the control surface can be set close to the ship. In the middle-field approach, the
boundary of computational domain can be set about 1L away from the ship.

3 Results and discussion
Head sea conditions are considered for all analyses presented in this paper. The time step is one percent
of the encounter period for both speed conditions, with Froude number (Fn) at 0.2 and 0.25. There are
29×8=232 panels on the wetted hull, 2856 panels on the free surface and 1250 panels on the control surface. The
computational domain on the free surface extends 1.5 times the ship length L in the y-direction, 0.5L upstream
and 1L downstream. The open boundary condition is applied to all the boundaries of the computational domain,
except the lateral boundary of the free surface where a numerical damping beach is applied to prevent the wave
reflection and to satisfy the radiation condition. The control surface is defined as half the elliptic cylindrical
surface and its dimensions in the x and y directions are set with 1.1L and 1.4 times ship breadth B, respectively.
The truncation depth of the control surface is equal to one incoming wavelength where the fluid velocity is almost
negligible. The distributions of fluid velocities caused by the disturbed waves along the vertical direction are
shown in Fig.1. We can see that the velocities in three directions all have attenuated exponentially to zero at
z=−λ. What’s interesting though is that their rates of decay are different. The exponential decay factor for
the longitudinal velocity is roughly the wavenumber of the incoming wave kI , while those for the transverse
and vertical velocities are approximately the wavenumber corresponding to the encountered wave frequency
ke = (

√
kIg + kIU)2/g. In addition, it is found that the fluid velocities in far field also have different rates of

decay in vertical direction.
The vertical motions and added resistance for S175 with different speeds are illustrated in Fig.2. As

shown in Fig.2(a), (b), (d) and (e), the body-exact strip theory gives the best prediction for vertical motions,
which reflects the importance of using the exact wetted surface for the pressure integration over the hull. The
overall tendencies of the vertical motions by NK and DB linearizations are similar and show good agreement
with experimental data, except that both heave and pitch motion responses are somehow overestimated in the
resonance region (1.0<λ/L<1.7). Around the peak value frequency, DB linearization gives better motion results,
since it takes the effect of interaction between steady and unsteady flows into account. As shown in Fig.2(c) and
(f), the added resistances obtained by a DB linearization are also better than those by NK, especially for the
near-field method. As for the added resistance obtained by near-field method (NK), the peak value frequency
is shifted to the long wave region. As for the added resistance obtained by middle-field method (NK), they are
overestimated in short waves while underestimated in long waves. The added resistance obtained by near-field
method (DB) agree well with the experimental data at Fn=0.2. However, as the Froude number increases,
the added resistance is slightly underestimated by near-field method (DB) around the peak value frequency
(0.9<λ/L<1.3). This may be because the DB linearization is regarded as a slow-ship linearization. It should be
noted that, in the two cases with different Froude numbers, the middle-field method based on DB linearization
gives better results than near-field method. As can be seen in Fig.2(c) and (f), the body-exact strip theory offers
good estimation for added resistance in intermediate wavelength waves, but it overestimates in long waves.

The distribution and different components of added resistance are shown in Fig.3. As illustrated in Fig.3(a),
the main contribution to the added resistance comes from the waterline integral, while the pressure integration
over the mean wetted hull surface has negative effects on added resistance. As shown in Fig.3(b), the added
resistance from the pressure integration above and below the waterline are both mainly in stem region. In
addition, Fig.3(c) shows that the stem region affected by the added resistance from waterline integration gets
smaller, as wavelength increases. Meanwhile, the peak value position moves towards the bow.
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Figure 1: Distribution of fluid velocities caused by disturbed waves along the vertical direction. The shared horizontal
position of the probes is (−0.43L,−0.06L) near the stern on the control surface. (a) Longitudinal velocity; (b) Transverse
velocity; (c) Vertical velocity.
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Figure 2: Comparison of vertical motions and added resistance on S175 containership in head seas by NK, DB and
body-exact strip theory. (a) Heave RAOs at Fn=0.2; (b) Pitch RAOs at Fn=0.2; (c) Added resistance at Fn=0.2; (d)
Heave RAOs at Fn=0.25; (e) Pitch RAOs at Fn=0.25; (f) Added resistance at Fn=0.25.
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Figure 3: The components and distribution of added resistance on S175 containership at Fn=0.25 in head seas by near-
field method (DB). (a) Comparison of added resistance from waterline integral and pressure integration over the mean
wetted hull surface in Eqn.(8); (b) Comparison of added resistance distribution in longitudinal direction contributed by
waterline integral and pressure integration over hull surface for λ/L=1.2; (c) Comparison of added resistance distribution
in longitudinal direction contributed by waterline integration for different wavelengths.


