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Water wave scattering by a submerged inclined poroelastic plate
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1 Introduction
In recent years, water wave scattering by submerged structures having various structural properties
and orientations have been a topic of great interest. In order to preserve the already exhausted natural
resources researchers are focusing on extracting wave energy to meet the power requirements of the
world. Elastic structures are quite efficient in reflecting back the waves but are not that impactful
when it comes to reducing wave loads on the structure. Porous nature along with elasticity of the
structure can serve this purpose by dissipating wave energy. The hydrodynamic behaviour of inclined
barrier was studied by Parsons and Martin (1992) using the Green’s theorem approach. Recently,
Ashok et al. (2020) investigated water wave scattering by vertical flexible porous structure. To the
authors’ knowledge there is no work in literature on inclined porous elastic structures. Thus here we
investigate the problem of water wave scattering by an inclined poroelastic thin plate submerged in
deep water.

2 Mathematical Formulation
A rectangular Cartesian coordinate system is considered in which the positive y-axis is pointing verti-
cally downwards in the fluid domain. A thin poroelastic plate Γ of length 2L and negligible thickness
d is inclined at an angle θ with the positive y-axis. The midpoint of the plate is at the distance h
from the mean free surface (y = 0). Assuming linear water wave theory and irrotational motion, a

wave train described by Re{φ(x, y)e−iσt′} is normally incident on the plate Γ.

Here φ(x, y) satisfies :

φxx + φyy = 0, in the fluid region, (1)

Kφ+ φy = 0, on y = 0,−∞ < x <∞, (2)

φ,∇φ→ 0, as y →∞, (3)

r−1/2 φ is bounded as r → 0, (4)

where r is distance from any submerged end of the plate and the radiation conditions,

φ(x, y)→
{
φin(x, y) +Rφin(−x, y) as x→ −∞,
Tφin(x, y) as x→∞. (5)

Here R and T denote the reflection and the transmission coefficients and φin(x, y) denotes the incident
wave potential given by φin(x, y) = e−Ky+iKx.

Let the displacement of the inclined plate be defined by w(x, y, t′) = Re{χ(x, y)e−iσt′}, where χ(x, y)
is displacement amplitude. The equation of motion due to fluid pressure is given by,

D
∂4χ

∂s4
− εKχ = − iσ

g
[φ](q) on Γ, q ∈ Γ, (6)

where, D =
Ed3

12ρw(1− ν2)g
, ε =

ρp
ρw
d.

Here, E represents the Young’s modulus, ν denotes the Poisson’s ratio, and ρp and ρw denote the
material density of the plate and the density of water respectively. [φ](q) = φ(q+) − φ(q−) denotes
the potential difference across the plate.
The boundary condition on the surface of the plate is given by:

∂φ

∂nq
= −iKG[φ](q)− iσχ, q ∈ Γ, (7)



where, G represents the constant porosity parameter which varies along the length of the plate Γ.
We consider the top end of the plate to be clamped and the bottom end to be moored. Thus we have,

∂χ

∂s
= 0 = χ at top end of Γ, and

∂2χ

∂s2
= 0,

∂3χ

∂s3
= Mχ at bottom end of Γ. (8)

Here M = 2kd sin2(Θ)/EI cos3(θ) where kd is the spring constant and Θ denotes the mooring angle.

3 Method of Solution
We transform the (x, y) coordinate system to (u, v) coordinate system where the plate Γ can be treated
as a vertical plate lying along the v-axis. From the origin of the new system the upper end of the plate
is at a distance a and lower end is at a distance b. Thus 2L = b − a holds. In the (u, v) coordinate
system equation (6) becomes,

d4χ

dv4
− α4χ = − iK

σD
[φ](0, v), a < v < b (9)

where α4 = εK
D , along with end conditions,

dχ

dv
= 0 = χ, at v = a, and

d2χ

dv2
= 0,

d3χ

dv3
= Mχ, at v = b. (10)

We solve the above boundary value problem using the Green’s function technique assuming that right
hand side of equation (9) is known. Thus g(ζ, v) satisfies,

d4g

dζ4
− α4g = δ(ζ − v), a < ζ, v < b, (11)

g = 0 = gζ at ζ = a, and gζζ = 0, gζζζ = M g, at ζ = b. (12)

Along with continuity of g, gζ , gζζ at ζ = v, and jump discontinuity gζζζ(v
+, v) − gζζζ(v−, v) = −1.

The general solution of equation (11) will be of the form

g(ζ, v) =

{
A1 cos(αζ) +A2 sin(αζ) +A3 cosh(αζ) +A4 sinh(αζ), a < ζ < v < b,
B1 cos(αζ) +B2 sin(αζ) +B3 cosh(αζ) +B4 sinh(αζ), a < v < ζ < b

(13)

where Ai, Bi (i = 1, 2, 3, 4) are all unknown functions of v only which are determined using the above
equations satisfied by g(ζ, v). Once the form of g is found the expression for χ(0, v) is obtained as,

χ(0, v) = − iK

σD

∫ b

a
g(ζ, v) [φ](ζ) dζ, a < v < b. (14)

By virtue of the above equation and the condition (7) on the plate ∂φ
∂nq1

can be expressed as,

∂φ

∂nq1
= −iKG[φ](q1)− K

D

∫
Γ
g(q2, q1) [φ](q2) dsq2 ; q1 ∈ Γ. (15)

We next apply Green’s integral theorem on the scattered potential (φ − φin)(p1) and the Green’s
function G(p1, p2) (cf. Mandal and Chakrabarti (2000)) due to a line source situated at the point p2.
Letting pi → qi and taking the normal derivative of the expression of φ thus obtained, at the point q1
on Γ we get a second expression for the normal velocity on the plate as given by,

∂φ

∂nq1
=

∂

∂nq1

{
φin
}
−
∫
X

Γ
[φ](q2)

∂2G
∂nq1∂nq2

(q1, q2) dsq2 ; q1 ∈ Γ. (16)

Comparing equations (15) and (16) we get a hypersingular integral equation of the second kind as,∫
X

Γ

[ ∂2G
∂nq1∂nq2

(q1; q2)− K

D
g(q2, q1)

]
[φ](q2) dsq2 − iKG[φ](q1) =

∂

∂nq1

{
φin
}

; q1 ∈ Γ. (17)
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Parametrizing the above equation we get,∫
X

1

−1
f(t)

[
− 1

(s− t)2
+ 2πL2L(s, t)

]
dt− 2πiKLGf(s) = F (s), −1 < s < 1 (18)

where f(t)(= [φ](q2)) is an unknown function which must vanish at t = ±1 and L and F are known
bounded functions. To solve equation (18), f(t) is approximated as

f(t) = (1− t2)1/2
M∑
n=1

anUn−1(t), (19)

where Un(t)’s are the Chebyshev polynomial of the second kind and an’s are unknown constants to
be determined. Substituting (19) in (18) and collocating at M points s = sj gives,

M∑
n=1

anBn(sj) = F (sj), j = 1, ...,M, (20)

where Bn(sj) =
[
n− 2iKLG (1− s2

j )
1/2
]
πUn−1(sj) + 2πL2

∫ 1

−1
(1− t2)1/2L(sj , t) Un−1(t) dt

and sj = cos
2j − 1

2M
π, j = 1, ...,M.

Once an’s are known, expression for reflection coefficient R, energy loss coefficient J and hydrodynamic
force F can be determined analytically.

4 Numerical Results
Non-dimensional hydrodynamic quantities are evaluated numerically. The obtained numerical results
are depicted graphically against the non-dimensional wavenumber for varying parameters. In Figure 1,
the validation of the present results are shown. Figure 1(a) depicts comparison with Meylan (1995) for
a surface piercing vertical elastic plate taking porosity parameter G = 0 here. Figure 1(b) compares
present results with Gayen and Mondal (2014) for vertical porous plate with G = 1 taking large value
of flexural rigidity D/p4 = 1000 where p is the depth of lower end of the plate. In Figure 2(a) and (b),
absolute value of reflection coefficient |R| and non-dimensional hydrodynamic force |F1| respectively
are plotted against the non-dimensional wavenumber KL. In both the graphs the angle of inclination
θ is varied and the other parameters are non dimensionalised with respect to L. We choose h/L = 1.1,
ε/L = 0.02, D/L4 = 2, G = 0.5. It is observed that as θ increases, i.e. as the plate deviates from
its vertical position |R| decreases. Also for lower frequencies, hydrodynamic force decreases when θ
increases but for higher frequencies the nature is not that clear. In Figure 3(a) and (b), energy loss
coefficient J has been plotted for varying values of G and θ respectively. It is seen that as real part
of G increases J increases, but J decreases as imaginary part of G increases when its real part is
kept fixed. Similar behaviour of energy loss coefficient was also found in Ashok et al. (2020). Also
increasing the value of θ decreases J .
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Figure 1: Validation of present results.
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Figure 2: Reflection coefficient and hydrodynamic force for different θ and fixed h/L = 1.1, ε/L = 0.02,
D/L4 = 2 and G = 0.5.
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Figure 3: Energy loss coefficient J for (a) different G, θ = π/4 fixed, (b) different θ, G = 0.5 fixed and
other parameters h/L = 1.1, ε/L = 0.02 and D/L4 = 2 are fixed for both.

5 Conclusion
Using hypersingular integral equations approach water wave scattering is studied by a poroelastic
inclined plate submerged in deep water. It is observed that structural porosity along with elasticity
aids in reducing hydrodynamic force on barrier by dissipating energy. Further it is seen that as
inclination of the plate increases, both the amount of reflection and dissipated energy decrease.
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