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Introduction 

The concept of impulsive fluid/structure interaction widely used to study an initial stage of 

violent water impact flows, for which a strong couple between the nonlinear and unsteady effects may 
result in an extremely large hydrodynamic pressure and the force, respectively. Among the earliest 

work is that by Havelock (1949) in which he introduced a type of problem similar to that we are 

studying here: suddenly forced motion of a body with constant velocity at time zero. This concept has 
received much extension with application to aircrafts landing on water surface (von Karman, 1929), 

steep waves that suddenly hit coastal or marine structures (Cooker and Peregrine, 1995), impulsive 

motion of the submerged cylinder (Greenhow, 1987; Tyvand and Miloh, 1995) and impulsive sloshing in 

containers (Tyvand and Miloh, 2012), dam-break flows (Korobkin and Yilmaz, 2009). The solution 
based on the impulsive concept may contain a singularity at the three phase contact line. In such cases 

the solution is used as an outer solution which has to be matched with the inner solution following to 

the method of matched asymptotic expansion (Howison, Ockendon and Wilson, 1991).  
In this study, we consider a body fully submerged into the liquid and subjected to impact such 

that the body suddenly set into motion at initial time. The motivation for this research comes from 

naval hydrodynamics of a high-speed hydrofoil craft whose foil system may experience sudden 

vertical motion caused by wave impacts onto the main body of the craft.   

Boundary-value problem 
A sketch of the physical domain is shown in figure 1(a). The body submerged below flat free surface 

is symmetric respect to  -axis, therefore only half of the flow region is considered. Before the impact, 

   , the body and the liquid are at rest. At time      the body suddenly set into motion with 

velocity   directed downward. The problem of a rigid body moving suddenly into a fluid body is 

dynamically equivalent to the problem of a fluid body moving suddenly around the rigid body with 

velocity   at infinity. We define a Cartesian system    with its origin on the body surface at point  . 
The body is assumed to have an arbitrary shape which can be defined by the slope of the body as a 

function of the arc length coordinate  ,         . The liquid is assumed to be ideal and 

incompressible, and the flow is irrotational. The gravity and surface tension effects are ignored.  
 

 
 

Figure 1. (a) The physical z-plane with the submerged body, (b) the parameter, or –plane. 
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For two-dimensional inviscid, incompressible, irrotational flow we can introduce a complex potential 

                      with       . We use non-dimensionalization based on  ,  ,  . 

Then,         ,      ,      ,       ,                   ,               .  

By integrating Bernoulli’s equation 
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over the infinitesimal time interval      and taking into account that the integral of the third term 

tends to zero, one can obtain 

      
  

 
   ,     (2) 

 

where   is the impulsive pressure. Here, |V| is the velocity magnitude, p and pa are the hydrodynamic 

pressure and the pressure on the free surface, respectively.  

The vertical impulse force Fy  is obtained by integrating the impulse pressure over the body 

surface,  

                      
  

  
     ,    (3) 

where   is the arc length coordinate along the body surface;    and    are the arcthlength coordinates 

of points    and  ; m is the coefficient of the added mass. The multiplier “2” appears to account force 

acting on the whole body. Since we consider the body symmetric respect to y-axis, the horizontal 

impulse force equals zero. As it follows from equation (3), the coefficient of the added mass is 
defined as  

                     
  

  
.     (4) 

 

The problem is to determine the velocity potential        immediately after the impact. 

 

Conformal mapping 

We introduce the complex potential                    , where        is the stream function, 

and choose the first quadrant of the -plane in figure 1b as the region corresponding to fluid region in 
the physical z-plane (figure 1a). The theorem on conformal mapping allows us to choose arbitrary 

locations of three points which are the points O at the origin (   ), D (D′) at infinity, and B at    1 

(see figure 1b). The position of points A (   ) and C (   ) has to be determined from physical 

considerations.  
By applying integral hodograph method we can determine the complex velocity, dw/dz, and the 

derivative of the complex potential, dw/d, both defined in -plane:  
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Here,       is the slope of the body as the function of the coordinate  , and       is the modulus of  

the velocity on the free surface just after the impact,   is a real constant. The derivative of the 

mapping function is obtained by dividing (6) by (5) 

 

  

  
    

   

   
 

 

 
 

   

   
 

 

 
     

 

 
 

   

  

 

 
   

   

   
    

 

 
 

     

  
   

    

    
   

 

 
  

 

 
   .    (7) 

 

Kinematic boundary condition on the free surface 

The velocity generated by the impact is perpendicular to the free surface, or it is directed in y-

direction. Accordingly, the argument of the complex velocity (5) is 
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Taking the argument of the complex velocity from (5), we obtain the following integral equation 

respect to the function 
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Equation (9) is the Fredholm integral equation of the first kind with the logarithmic kernel. The 

solution takes the form 
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For the case of a submerged flat plat, the solution can be simplified. The function       can be 
written explicitly 

       
             
              

     (11) 

 

By substituting (11) into (5) and (10) and evaluating the integral over step change in the function 

      at    , we obtain the expression for the complex velocity  
 

  

  
    

   

   
 

 

 
 

   

   
 

 

 
 

   

   
      

 

 
 

     

  
   

    

    
   

 

 
  

 

 
  ,        

 and for the velocity along the free surface 

     
            

    
.     (13) 

 

The parameters      and   are determined using the depth of submergence  , length of the low side 

   and upper side    of the plate.  

 

Results 

The added mass coefficients according to definition (4) are shown the In table 1 for various shapes of 

the body. For the flat plate,       as     that corresponds to the von Karman impact solution 

for the flat plate floating on the free surface. As      the effect of the free surface becomes 

negligible, and the coefficient of the added mass    , that corresponds to the added mass in the 
unbounded fluid domain. 

For the circular cylinder, we obtained value      for     .  This value is different from 

     in Newman (1977, p.145). The difference occurs due to different definition of the added mass 

in (4) and in equation (114) in Newman (1977). It is found that they are related as 
 

         ,      (14) 

 

where   is the area of the body. Since the area of the flat plate is zero, the values   and    coincides. 

For the cylinder with radius  , the area      , and for the squire with the side length   , the area 

     . At the depth     , that is close to the impact in unbounded fluid domain, the values 

           =3.141 and             =      . They are coincide with the values from 

Newman (1977, p.145). 

The fluid velocity on the free surface for the flat plate is shown in figure 2 for different 

depths of submergence. The minimum velocity occurs in the center of the plate, since the 

plate carries away the liquid down. At the edges of the plate the velocity  of the liquid is 

infinite as it is seem from (12). We could expect the peak of the velocity on the free surface 

close to edges at     . However, the location of the peak depends on the depth of 

submergence as it seen in figure 2.  



H 0 0.02 0.05 0.1 0.3 0.5 1 5 50 

Plate 1.571 1.624 1.735 1.876 2.265 2.516 2.835 3.108 3.137 

Cylinder - 5.232 5.253 5.304 5.512 5.673 5.919 6.246 6.283 

Squire - 6.993 7.011 7.048 7.292 7.552 8.024 8.667 8.754 

Table 1. Added mass coefficient for various bodies and depths of submergence. 

 

The fluid velocity along the free surface is shown in figure 3 for the square (2L   , blue 

lines), and for the rectangle (2L  , red lines). The larger area of the body, the larger added mass, and 

the smaller peak of the velocity on the free surface.  

 

 
Figure 2. Velocity magnitude on the free 

surface 

Figure 3. Velocity on the free surface for the 

square (2L   , blue lines), and for the rectangle 

(2L  , red lines).  
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