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1 Introduction

The theoretical limits for absorption of energy in monochomatic water waves of wavelength λ by axisym-
metric wave energy converters (WECs) operating in rigid-body motion were established independently in
the 1970s by a number of authors ([1], [2], [3]). The maximum mean power generated by an axisymmetric
WEC device absorbing due to heave motion is equivalent to that contained in λ/2π length of incident
wave crest. For devices absorbing through surge and/or pitch motions the maximum so-called capture
width doubles to λ/π. For devices that absorb in both heave and surge/pitch the maximum capture
width increases further to 3λ/2π.

The purpose of the present paper is to demonstrate that these rigid-body limits can be extended
without bound (theoretically at least) by allowing an axisymmetric device to operate and absorb energy
in “generalised hydrodynamic modes” of motion (following ideas promoted by [4], although the general
idea had previously been applied to wave power absorption by hinged rafts by Newman and Mei; see [5]).
This involves allowing the surface of the device to move with more than the translational and rotational
degrees of freedom that would be in operation if the device were rigid.

In this paper the general theory is applied to a specific example in which an array of narrow vertical
paddles are distributed evenly around the surface of a vertical cylinder which itself extends through
the fluid depth. The paddles are fitted with springs and dampers extract power from the waves. The
simplicity of the geometry combined with a continuum approximation for the narrow paddles is used to
devise strategies for assigning spring and damper characteristics to optimise the power.

2 General theory

We operate under classical linearised water wave theory in which the flow can be described by a velocity
potential satisfying

∇2φ = 0, in the fluid (1)

with
φz = 0, on z = −h and φz − (ω2/g)φ = 0, on z = 0 (2)

assuming the factorisation of a time dependence of e−iωt where ω is the angular frequency of motion.
A plane wave (pw) of wavelength λ = 2π/k, angular frequency ω and amplitude A travelling in the

positive x-direction on water of density ρ and depth h is described by the velocity potential

φpw(x, y, z) = − iAg

ω
eikxψ0(z) (3)

where ω =
√
gk tanh kh is related to the wavenumber k and ψ0(z) = cosh k(z + h)/ cosh kh is the

eigenfunction through the depth, z, associated with propagating waves. The power per unit crest length
of wave is

Ppw =
1

2
ρg|A|2cg, where cg =

dω

dk
=

1

2
(ω/k)(1 + 2kh/ sinh 2kh). (4)



The plane wave in (3) can be written as a sum of incoming and outgoing circular waves

φpw(r, θ, z) = φin(r, θ, z) + φout(r, θ, z) (5)

where

φin = − iAg

2ω
ψ0(z)

∞∑
n=0

εninH(2)
n (kr) cosnθ and φout = − iAg

2ω
ψ0(z)

∞∑
n=0

εninH(1)
n (kr) cosnθ (6)

in terms of Hankel functions and where ε0 = 1, εn = 2 for n ≥ 1. It is readily established that the flux
of energy in the nth circular component of each of these components is Pn = (εnλ/2π)Ppw. When the
incident plane wave interacts with a structure be it fixed, freely floating, under mooring constraints, or
absorbing energy, the total potential in the far field can be expressed as

φ(r, θ, z) ∼ φpw−
iAg

ω
ψ0(z)

∞∑
n=0

εninan,0H
(1)
n (kr) cosnθ = φin−

iAg

2ω
ψ0(z)

∞∑
n=0

εnin(2an,0+1)H(1)
n (kr) cosnθ

(7)
and thus the power lost to the structure is

P =
∞∑
n=0

Pn
(
1− |2an,0 + 1|2

)
. (8)

It follows that the scattering coefficients an,0 = aSn,0 (say) for non-absorbing structures must satisfy the

condition |2aSn,0 + 1| = 1. However, for devices with the capacity to absorb energy, it is possible to
absorb all of the available power, Pn, from the nth mode if the scattering coefficients can be made to
satisfy 2an,0 + 1 = 0. For this is to happen the device must have the capacity to radiate waves through
motions responsible for absorbing wave energy in the nth circular mode, i.e. in proportion to cosnθ. For
example, rigid-body heave motion radiates waves only in the zeroth circular mode, and so its maximum
power absorption is limited to Pmax = P0, whilst surge and pitch motions radiate in the n = 1 circular
mode giving rise to a maximum of Pmax = P1; combined heave and surge/pitch provide a maximum of
Pmax = P0 + P1. Thus we recover the classical results stated in the opening paragraph of the abstract.

However, if we are able to design a WEC whose absorbing components radiate in all 0 ≤ n ≤ M
circular modes, then there is the possibility of tuning the device operation to give

Pmax =
Ppwλ
π

(M + 1
2). (9)

3 A cylindrical wave energy converter

A vertical cylinder of radius a extends through depth. An array of N identical narrow vertical paddles
are attached to the surface of the cylinder having width 2πa/N � c, their length. The nth paddle is
centred on the axial planes θn = (2n− 1)π/N , n = 1, 2, . . . , N and, in motion, oscillates radially either in
piston-like motion, or through a pitch rotation about a hinged lower edge, with amplitude Re{σne−iωt}.
The nth paddle is connected to the cylinder with a spring having spring constant κn and a linear damper
with damping rate γn through which power is extracted.

The kinematic boundary condition on the nth paddle is therefore

∂φ

∂r

∣∣∣∣
r=a

= −iωσnf(z) cos(θ − θn), −h < z < 0, θn − π/N < θ < θn + π/N (10)

for n = 1, 2, . . . , N and cos(θ− θn) is a geometric factor due to the assumed curved surface of the paddle
whilst f(z) encodes the paddle’s vertical displacement. For e.g. piston-like operation is given by f(z) = 1,
−c < z < 0 and f(z) = 0, −h < z < −c. The equation of motion for the nth paddle is expressed by

−ω2(2πaM/N)σn = iωγnσn − (κn + (2πaC/N))σn − iωρ

∫ 0

−h

∫ θn+π/N

θn−π/N
φ(a, θ, z)f(z) cos(θ − θn) adθ dz

(11)



where M is its mass (or moment of inertia) and C is its buoyancy force (or moment) per unit width.
Since N is large and the paddles are narrow we assume that all discrete variables, σn, κn and γn

may be replaced by discrete evaluations, σ(θn), (2πa/N)κ(θn) and (2πa/N)γ(θn) of (scaled) continuous
functions allowing (10) and (11) to be approximated and combined into a single coupled dynamic and
kinematic boundary condition on r = a for −h < z < 0 and 0 ≤ θ < 2π, namely

[M− ω−2(κ(θ) + C) + iω−1γ(θ)
] ∂φ
∂r

∣∣∣∣
r=a

= ρf(z)

∫ 0

−h
φ(a, θ, z)f(z) dz. (12)

The general solution to (1), (2) with (12) subject to an incident plane wave can be expressed as

φ(r, θ, z) = − igA

ω

∞∑
n=0

εninφn(r, z) cosnθ (13)

where

φn(r, z) = (Jn(kr) + an,0H
(1)
n (kr))ψ0(z) + (J ′n(ka) + an,0H

(1)
n

′
(ka))

∞∑
m=1

kFmN0Kn(kmr)

kmF0NmK ′n(kma)
ψm(z) (14)

in terms of Bessel and modified Bessel functions and

Fn =
1

h

∫ 0

−h
ψn(z)f(z) dz, and Nn =

1

h

∫ 0

−h
[ψn(z)]2 dz (15)

for n = 0, 1, 2, . . . and, for n ≥ 1, ψn(z) = cos kn(z+h)/ cos knh where ikn (kn real and positive) are roots
of the dispersion relation. The scattering coefficients, an,0, are determined from the application of (12)
to (13) and provides the platform for devising strategies to optimise power absorption by the paddles.

We consider two strategies. The first assumes all springs and dampers are identical. Then κ(θ) ≡ κ,
γ(θ) ≡ γ in (12) and by imposing am,0 = −1

2 for an m of our choice, we can guarantee that 100% of the
power, Pm, is absorbed from the mth circular mode such that P ≥ Pm. In doing so, we find

γ =
2ωρhF 2

0

πk2aN0|H(2)
m

′
(ka)|2

(16)

whilst κ is determined from

M− ω−2(κ+ C)
ρh

=
F 2
0 (Jm(ka)J ′m(ka) + Ym(ka)Y ′m(ka))

kN0|H(2)
m

′
(ka)|2

+
∞∑
n=1

F 2
nKm(kna)

knNnK ′m(kna)
. (17)

In the second strategy, we allow the springs and dampers to vary around the cylinder, expressing them
both as Fourier series. It can subsequently be shown that it is possible to determine their Fourier
coefficients and hence the design of springs and dampers such that P = Pmax defined by (9) by setting
an,0 = −1

2 for n ≤ M and an,0 = 0 for n > M . In principle, there is no bound upon M although there
will be practical considerations associated with increasing values of M .

Figure 1: (a) Capture factor, η = P/P0 = P/(Ppwλ/2π), against ka for piston-like paddle motion and, in
(b), (c) corresponding dimensionless optimised damper and spring values κ̄ = κ/(ρga), γ̄ = γ/(ρa

√
gh).



4 Results

In Fig. 1 we show the dimensionless capture factor η = P/(Ppwλ/2π) against ka when equal springs and
dampers are optimised to take all the power from a range of circular modes. We have concentrated on
piston-like paddle operation with a/h = 1, c/h = 1

2 and used M = 0.034ρah, C = 0. Although the
theory only guarantees η ≥ εm, the rigid-body limit of η = 3 is exceeded for sufficiently large ka as high
absorption happens to take place across other circular modes. The free surface amplitude associated
with these results are shown in Fig. 2. Fig. 3 shows the maximum free surface amplitudes when unequal
springs and dampers are tuned to extract all of the available energy from the first 4 circular modes. It
can be seen that paddles must work harder for smaller values of ka to absorb power well in excess of rigid
body limits, bringing into question whether this particular embodiment of the general theory is really a
practical solution. More extensive results will be shown at the workshop including a comparison between
the computations based on the discrete paddle description (10), (11) and the continuum approximation.

Figure 2: Maximum free surface elevation at ka = 2 for equal springs and dampers optimised to absorb
100% of the power from modes: (a) m = 1; (b) m = 2; (c) m = 3.

Figure 3: The maximum free surface elevation when unequal springs and dampers are optimised to absorb
100% of the power available from the first 4 modes (M = 3, η = 7) at (a) ka = 1, (b) ka = 2, (c) ka = 3.
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