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1 INTRODUCTION

In finite-volume-based flow simulations with free-surface waves, accurate wave-generation and wave-
damping at the domain boundaries is important. Wave reflections at the boundaries of the computational
domain can cause substantial errors in the results and must therefore be minimized (cf. Peri¢ and Abdel-
Maksoud, 2016). This can be achieved by implementing relazation zones, which gradually fade-out the
simulated flow solution and blend-in a prescribed far-field wave solution near the domain boundaries.

The main challenge with relaxation zones is that they only provide satisfactory wave-generation
and -damping if their case-dependent parameters are optimized. In contrast to similar approaches (such
as ‘forcing zones’, cf. Perié¢, 2019), no analytical approach has been presented yet to obtain the optimum
values for the case-dependent parameters of relaxation zones.

Relaxation zones can be subdivided into implicit and explicit relaxation zones, which are funda-
mentally different.

Implicit relaxation zones (implemented e.g. in Naval Hydro Pack, cf. Vukéevié et al., 2016a, 2016b;
Perié¢, 2019) introduce source terms in the governing equations to blend, say a general transport equation
T for transport quantity ¢, over to a reference solution ¢t via

(1—-b(x)T + b(TX)Rzo , (1)
where b(x) is a blending function such as Eq. (5), 7 corresponds e.g. to the conservation equations for
fluid momentum or volume fraction, and R corresponds to [i, (¢_¢rer) AV (cf. Sect. 2).

Explicit relazation zones (implemented e.g. in waves2Foam, cf. Jacobsen et al., 2012) modify the

fields for volume fraction « and velocity u by replacing computed values ¢computed by

¢ = (1 - b(x))¢target + b(x)(bcomputed ) (2)

where b(x) is a weighting function and ¢iarget is the target solution. This modification is performed in
each time-step, e.g. prior to the solution of the pressure-velocity coupling (cf. Jacobsen et al., 2012). In
contrast to implicit relaxation zones, it is not directly apparent to which source terms in the governing
equations the ‘explicit’ manipulation of the flow field corresponds. Therefore, in the following the focus
will be on implicit relaxation zones.

The aim of this work is to present an analytical approach to optimize the case-dependent parameters
of implicit relaxation zones, so that these can be optimized before performing the flow simulation.

Section 3 presents the analytical approach. Section 5 compares the analytical predictions against
results from 2D- and 3D-flow simulations based on the setup from Sect. 4 and discusses the findings.



2 GOVERNING EQUATIONS WITH IMPLICIT RELAXATION ZONES

The conservation equations for momentum and volume fraction take the form

(1-0b(x)) [jt/vpul dV+/Spui(u— ug)-ndS

_/S(Tijij—pii).ndS—/VPg‘-ii dV] —|—b(x)|:/vp(u—llref) dV] =0 , (3)

T

(1 b(x)) [;t/vadV+/Sa(u—ug)~ndS} +Z’(T")[/V(a—aref) dv] 0 ()

with volume V of control volume (CV) bounded by the closed surface S, fluid velocity u = (u1, uz, u3)® =
(u,v,w)", grid velocity u,, unit vector n normal to S and pointing outwards, time ¢, pressure p, fluid
density p, components 7;; of the viscous stress tensor, unit vector i; in direction x;, volume fraction « of
water, reference velocities u,ef and reference volume fraction ay.ef.

Implicit relaxation zones have three case-dependent parameters: relaxation parameter 7, blending
function b(x), and relaxation zone thickness z4. The relaxation parameter 7 has unit [s] and regulates
the magnitude of the source term in such a way that a large value of 7 implicates a small source term and
vice versal. The blending function is bounded between 0 and 1. In this work, power blending functions

will be used o
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where z is the shortest distance to the closest domain boundary to which a relaxation zone of thickness
x4 is attached, and n regulates the shape of the blending function.

3 ANALYTICAL APPROACH FOR OPTIMIZING THE CASE-DEPENDENT
PARAMETERS IN IMPLICIT RELAXATION ZONES

To estimate the optimum values for the case-dependent parameters in implicit relaxation zones,
multiply Eqgs. (3) and (4) by the factor 1/ (1 — b(x)). Then, the implicit relaxation zone can be interpreted
as a forcing zone (cf. Peri¢, 2019) with forcing strength ~ set to

N = (Ekin,x + E_’kin,iy + Ekin,z + Epot) 1 (6)
Ekin,:r 7—(1 - b(X)) ’

with kinetic Ekin’xi and potential Epot wave energy components, relaxation parameter 7 and blending
function b(x); the analytical solution can then be taken from Peri¢ and Abdel-Maksoud (2018).

This derivation neglects some flow phenomena of minor importance, such as that reflected wave
components due to different source terms can have different phases and may partially cancel destructively.
Thus, actual reflection coefficients can be lower than predicted via Eq. (6). Apart from this, the following
can be expected from Peri¢ (2019): The optimum value of relaxation parameter 7 will be closely predicted.
The predictions for reflection coefficient Cr can be taken as estimates for the upper-limit of the actual
reflection coefficients in the simulations. The relaxation zones behave discretization-independent. For
irregular waves, the overall reflection coefficient Cr can be estimated based on the reflection coefficients
of each wave component. The approach applies for nonlinear waves as well, because, for optimized
parameters, partial wave-reflection occurs throughout the relaxation zone with small amplitudes (i.e.

INote that in some publications 7 has been considered a numerical-stability parameter and has therefore occasionally been omitted
from Eq. (1). However, the present work demonstrates the physical meaning of 7 and also that its optimum value does not necessarily
coincide with the value which gives the most favorable matrix conditioning.



nearly linear waves), which can interfere destructively. This ability to ‘linearize’ nonlinear waves makes
these comparatively simple approaches applicable to highly nonlinear, complex flows, and this is their
main advantage compared to boundary-based approaches, in which a complex nonlinear solution must
be prescribed at the domain boundary. For oblique wave incidence, the analytical approach above can
be extended to provide reflection coefficient Cr as a function of wave incidence angle. Results from
3D-flow simulations with strongly reflecting bodies in waves suggest that the analytical approach for
2D-wave propagation as outlined above typically suffices to optimize the relaxation zone’s parameters.
A simple computer program to optimize implicit relaxation zones has been published as free software:
https://github.com/wave-absorbing-layers/relaxation-zones-for-free-surface-waves.

4 SIMULATION SETUP

Flow simulations of free-surface wave-propagation were performed based on Eqs. (3) to (4), using
foam-extend version 4.1, an open-source solver fork of the solver OpenFOAM (Weller et al., 1998),
combined with the commercial software Naval Hydro Pack. The solvers were conjugate gradient with
Incomplete Cholesky preconditioner for pressures and bi-conjugate gradient with ILUQ preconditioner for
volume fraction and velocities. The PIMPLE scheme was used with two pressure-correction steps per
each of the two nonlinear iterations per time step. No under-relaxation was used. In all simulations, the
Courant number C' = |v|At/Az was well below 0.4. Further information on the discretization of and
solvers for the governing equations can be found in Ferziger and Perié¢ (2002) and the flow solver manuals.
The Volume of Fluid (VOF) method was used. Waves are generated by prescribing volume fraction and
velocities according to stream function wave theory (64" order). More details on the setup, including a
discretization-dependence study, can be found in Perié¢ (2019).

5 RESULTS AND DISCUSSION

Figure 1 shows results from 2D-flow simulations of regular, long-crested waves traveling towards an
implicit relaxation zone. The reflection coefficient Cr = Hyen/H in terms of reflected and generated wave
heights, Hr and H, was calculated as in Perié¢ (2019).

The results show that the optimum value for relaxation parameter 7 can vary by three orders
of magnitude, when zone thickness x4 and exponent n of the blending function b(x) are varied. This
demonstrates the importance of optimizing the relaxation zone’s parameters. The optimum value for 7
is well predicted analytically. Note that its optimum value will differ depending on the wave period T

Figure 2 shows results from 3D-flow simulations with a semi-submerged, fixed pontoon positioned
in long-crested far-field waves. The analytical optimum (7 = 2.5s) for this case produced a periodic
solution, indicating that wave-generation and damping were effective. Too small 7-values produced wave
reflections at the entrance to the relaxation zone, and the forces acting on the pontoon became aperiodic
and increased in amplitude (cf. Fig. 2, left image). Too large 7-values damped not only the undesired
wave reflections, but also the incident wave, so that the far-field wave was not maintained anymore,
resulting in too low forces on the pontoon (cf. Fig. 2, right image). Detailed plots of the forces acting on
the pontoon can be found in Perié (2019).

6 CONCLUSION AND ACKNOWLEDGEMENTS

The present results demonstrate that the proposed approach is suitable for optimizing the paramet-
ers of implicit relaxation zones in complex 3D-flow simulations, as demonstrated for the generic case of a
strongly wave-reflecting pontoon subjected to long-crested far-field waves.
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Figure 1: Analytical predictions and simulation results for reflection coefficient Cr as a function of relaxation
parameter 7, for deep-water waves with period T = 1.6s; for different relaxation zone thickness xq and power
blending via Eq. (5) with different values for exponent n; for all simulation results C sim and corresponding theory
predictions CR theory h0lds CRr gim — CR theory < 4.7% (n = 0.46), and < 2.3% (n = 10); for the forcing strength
T < Topt,theory Closest to the theoretical optimum value Topg theory holds CRr gim — CR theory < 3% (n = 0.46), and
< —1.5% (n = 10)
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Figure 2: Simulation results for free-surface elevation at t = 15s with too small (7 = 0.01s), close-to-optimum
(7 = 2.558) and too large (7 = 100s) value of relaxation parameter 7; for relaxation-zone thickness x4 ~ 0.7X\ and
blending via Eq. (5) with exponent n = 0.46; if the relaxation is too strong (left), wave-reflection occurs near the
entrance to the relaxation zone; if relaxation is too weak (right), the far-field wave is not sustained; for optimized
relaxation-setup (middle), the waves reflected at the pontoon decay smoothly over the whole relaxation zone as
intended
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