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Introduction 

The hydroelastic response of the vertical circular cylinder partially filled with water is considered. The outer problem is 

formulated up to 2nd order while the inner sloshing problem is considered linear. The boundary value problem is solved 
using an appropriate eigenfunction expansion technique. Basic configuration is shown in Figure 1. 

 
 

Figure 1: Basic configuration 

 

The theoretical model for the fluid part is based on potential flow assumptions for both exterior and interior domains. On 

the structural side the simplified beam model is used. In principle, the beam model might not be the most appropriate for 

large columns with relatively thin cylindrical structure. However, since the purpose of the present work is to validate the 

coupling procedure and to provide reference results for the validation of the numerical codes, the structural problem has 

been simplified. The more advanced membrane type of structural modelling was discussed in [6] within the context of the 

closed flexible fish cages. Even if the membrane structural model leads to a more complex structural mode shapes, the basic 

principles of hydroelastic coupling, using the eigenfunction expansion methodology proposed here, remain the same. 

Hydrodynamic problems 

Exterior domain 

Up to second order the body motion/deformation vector {𝑯} is defined in the form of a series of the modal contributions: 
 

𝐇(𝐱, t) = ε𝐇(1)(𝐱, t) + ε2𝐇(2)(𝐱, t) = ∑[εΧi
(1)(t) + ε2Χi

(2)(t)]𝐡i(𝐱)

N

i=1

 (1) 

 

where 𝒉𝑖(𝒙) is the space dependent modal shape vector and Χ𝑖
(1)(𝑡) are the time dependent modal amplitudes. 

At the same time, the total velocity potential Φ(𝒙, 𝑡) is also decomposed into the first order and the second order parts: 

 

Φ(𝐱, t) = εΦ(1)(𝐱, t) + ε2Φ(2)(𝐱, t) (2) 

 

The corresponding boundary conditions at the free surface and the body, at different orders become: 
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∇Φ(1)𝐧 = 𝐇̇(1)𝐧         (5) 

   
∇Φ(2)𝐧 = 𝐇̇(2)𝐧 − [(𝐇(1)∇)∇Φ(1)]𝐧 + (𝐇̇(1) − ∇Φ(1))𝐧(1)         (6) 

 

where 𝐧(1) is the first order correction of the normal vector due to body deformations [2]. 
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In order to be able to solve for the amplitudes of the body motions, the total velocity potential is decomposed into the 

incident ΦI , diffraction ΦD and the radiation parts ΦRj : 

 

Φ(i) = ΦI
(i) + ΦD

(i) + ∑ Χ̇j
(i)ΦRj

(i)

N

j=1

,      i = 1, 2 (7) 

 

The incident velocity potential is known analytically and the diffracted and the radiated velocity potentials are subdivided 

by defining the following body and free surface boundary conditions for the radiation velocity potential: 

 

∇ΦRj
(i)𝐧 = 𝐡j𝐧     ,     

∂2ΦRj
(i)

∂t2
+ g

∂ΦRj
(i)

∂z
= 0,     i = 1, 2 (8) 

 

The diffraction velocity potentials satisfies the remaining parts of the body and the free surface boundary conditions [2]. 

Interior domain 

In the interior domain, the velocity potential, denoted by Ψ(𝐱, t), is also decomposed into its first and second order parts: 

 

Ψ(𝐱, t) = ∑[εΧ̇j
(1)

ΨRj
(1)

+ ε2Χ̇j
(2)

ΨRj
(2)

]

N

j=1

 (9) 

 

Only the radiation part of the velocity potential exists and it is defined by the following body and the free surface conditions: 

 

∇ΨRj
(i)𝐧 = −𝐡j𝐧     ,     

∂2ΨRj
(i)

∂t2
+ g

∂ΨRj
(i)

∂z
= ζj

A,    i = 1, 2 (10) 

 

where ζj
A is the vertical motion of the waterplane area Aw for each mode, given by ζj

A = ∬ 𝐡j𝐧dS
ST

/Aw (see [1] or [4]). 

Frequency domain formulation 

Monochromatic wave field is considered and the problem is formulated in frequency domain by assuming the incident 

wave potentials at the different orders as: 

 

ΦI
(1)(𝐱, t) = ℜ{φI

(1)(𝐱)e−iωt}     ,     ΦI
(2)(𝐱, t) = ℜ{φI

(2)(𝐱)e−2iωt} (11) 

 

Consequently all the other quantities will evolve at the same frequencies and can be represented in the same form. Lower 

case letters are used to denote the frequency domain quantities. The mean value which also occurs at second order, is 

neglected. 

Once the velocity potentials evaluated, the pressure is calculated from the Bernoulli equation and the hydrodynamic forces 

are calculated by integrating the pressure over the wetted part of the body. The total external hydrodynamic forces are 

decomposed into the parts dependent on the body motion (added mass [ 𝐀 ], damping [ 𝐁 ] and restoring [ 𝐂 ]) and the pure 

excitation part {𝐅E}, while the internal hydrodynamic forces are decomposed into the added mass [ 𝐀T] and the restoring 

part [ 𝐂T ]. Assuming that all the forces are expressed relative to the same reference point, the coupled motion equations 
become: 

 

{−ω2 ( [𝐌] + [ 𝐀 (ω)] + [ 𝐀T(ω)]) − iω[ 𝐁(ω) ] + ([ 𝐊 ] + [ 𝐂 ] + [ 𝐂T ])}{𝛏(1)} = {𝐅E(1)} (12) 

   
{−4ω2 ( [𝐌] + [ 𝐀 (2ω)] + [ 𝐀T(2ω)]) − 2iω[ 𝐁(2ω) ] + ([ 𝐊 ] + [ 𝐂 ] + [ 𝐂T ])}{𝛏(2)} = {𝐅E(2)} (13) 

 

where [𝐌] is the modal mass matrix of the structure and [ 𝐊 ] is the modal structural stiffness matrix. 

The solution of these motion equations gives the amplitudes of the body deformations and the problem is formally solved. 

Solution for the velocity potentials 

The semi-analytical solution for the exterior problem was presented in [2] both at first and second order and will not be 

repeated. Here we give few more details about the solution of the interior problem. The basic principles are taken from [1] 

where the modal decomposition method was proposed. The total velocity potential ψRj is decomposed into two parts: 

 

ψRj = ψj + Ωj (14) 

 

The so called Stoke Joukowski velocity potential Ω𝑗 is chosen to satisfy the original body boundary condition at the tank 

boundaries ST and the condition at the free surface (z = h − H) as follows: 
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∂Ωj

∂n
|

ST

= 𝐡j𝐧     ,     
∂Ωj

∂z
|

z=h−H

= ζj
A (15) 

 

It follows that the potential ψj satisfy the following body boundary condition and the free surface condition: 

 
∂ψj

∂n
|

ST

= 0     ,     −
ω2

g
ψj +

∂ψj

∂z
=

ω2

g
Ωj (16) 

 

In the present case of the vertical circular cylinder with the beam representation of the structure, the nonhomogeneous term 

at the free surface ζj
A is zero [see (24)] and the solution for the Stoke Joukowski potential can be found by eigenfunction 

expansion in the following form: 

 

Ωj(r, θ, z) = [γ0jr + ∑ γljI1(λlr) cos λl(z + H)

∞

l=1

] cos θ (17) 

 

with λl = lπ/h and I1 denotes the modified Bessel function. 

The functions cos λl(z + H)|l=0,∞ represent a complete orthogonal basis over the interval z ∈ [−H, h − H] so that the 

coefficients γlj follows in the following form: 

 

γlj =
∫ hj(z) cos λl(z + H)dz

h−H

−H

∫ cos2 λl(z + H)dz
h−H

−H

 (18) 

 

Knowing the Stoke Joukowski velocity potential Ωj, the complementary velocity potential ψj can be expressed as the sum 

of natural sloshing modes of the interior problem [3]:  

 

ψj(r, θ, z) = ∑ αnj

cosh μn(z + H)

cosh μnh
J1(μnr)

∞

n=1

cos θ (19) 

 

where μn = κn/R and κn is the nth zero of ∂J1(κnr)/ ∂κn. 

The unknown coefficients αnj are found from the free surface condition (16) which can be written as: 

 

∑ αnj(ωn
2 − ω2)J1(μnr)

∞

n=1

= ω2 [γ0jr + ∑ γljI1(λlr) cos λlh

∞

l=1

] (20) 

 

where ωn
2 = gμn tanh μnh and J1 denotes the Bessel function. 

Since the set of functions J1(μnr)|n=1,∞ defines a complete orthogonal basis over the interval 𝑟 ∈ [0, 𝑅], the coefficients 

𝛼𝑛𝑗 follow in the form: 

 

αnj =
ω2

ωn
2 − ω2

[γ0j

∫ rJ1(μnr)dr
R

0

∫ rJ1(μnr)J1(μnr)dr
R

0

+ ∑ γlj

∫ rI1(λlr)J1(μnr)dr
R

0

∫ rJ1(μnr)J1(μnr)dr
R

0

cos λlh

∞

l=1

] (21) 

Structural modelling 

As indicated in the introduction, the structural model is the simplified Euler Bernoulli beam model. This approximation of 

simple bending is of course questionable for the general case. However, since the goal of the analysis is to validate the 

overall coupling procedure, we believe that this simple structural modelling validates all the critical steps of the proposed 

analysis. Within the Euler Bernoulli beam approximation for the beam clamped at one end, the deformation modes can be 

chosen in many different ways among which the analytical dry modes and Jacobi polynomials are most often used. Here 

we use the Jacobi polynomials [5] described by the following expression: 
 

fj(z) = q2Pj−1(q)    ,    q =
z + H

L
    ,    Pn(q) = ∑ (−1)m

(4 + 2n − m)!

m! (n − m)! (4 + n − m)!
qn−m

n

m=0

 (22) 

 

The modal deformation of one point at the body becomes: 

 

𝐡j(x, y, z) = hjx𝐢 + hjy𝐣 + hjz𝐤 = fj(z)𝐢 + 0𝐣 −
∂fj(z)

∂z
x𝐤 (23) 
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It is now easy to show that the term ζj
A becomes zero in this case: 

 

ζj
A =

∬ 𝐡j𝐧dS
ST

Aw

=
∫ fj(z)dz ∫ cos θ dθ

2π

0

h−H

−H

Aw

= 0 (24) 

 

It should be noted that for the general case of tank deformations the value of ζj
A is not necessarily zero. 

Numerical results 

The following tank characteristics have been chosen for the numerical example: R = 30m, H = L = 100m, h =  75m 

(filling ratio 0.75), uniformly distributed mass along the length of the cylinder is the one third of the displaced mass, a 

concentrated mass at the top of the cylinder m0 (free surface level) is equal to the total displaced mass, the stiffness of the 

cylinder is chosen such that the ratio EI/L3 is equal to 0.27m0s−2. With those characteristics the first natural sloshing 

frequency is around 0.77 rad/s and the first bending mode resonance is around 0.84 rad/s. The results for the displacement 
of the top of the cylinder are shown in Figure 2. 

 

  
 

Figure 2: Total displacement of the top of the tank in regular waves of the amplitude 𝐴 = 10𝑚. (Left – without the 

liquid in the tank, Right – with liquid in the tank). 

 

The amplitude of the incident wave is set to be 10m and the total displacement of the top of the column is presented. The 
influence of sloshing can be clearly observed close to the 1st sloshing resonance frequency. A typical two peak response is 

induced by the dynamic interactions of the internal and external fluid flow. One additional peak in the response, around the 

1st sloshing resonance frequency, can also be observed and it is due to the excitation of the 1st sloshing mode induced by 

the second order vibrations of the column. 

Discussions 

We have presented here the general methodology for the analytical solution of the water wave interactions with partially 

filled circular cylindrical tank fixed at the sea bottom. The characteristic influence of sloshing on global body behavior was 

reproduced at first and second orders. It should be noted that the similar problem (only linear!) was treated in [1] using a 

slightly simplified approach based on strip theory which was possible thanks to the considered operating conditions. The 

present approach is fully consistent 3D approach and can be applied to any particular cylinder configurations. Due to the 

high precision of the semi-analytical approach, the results can be used for the validation of numerical results. Applying the 
same methodology to the membrane type of structural modelling is left for further work. 
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