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INTRODUCTION

Parametric resonance is a phenomenon that can arise in mechanical systems, whereby a response in a
particular mode is excited via a time-varying parameter, as opposed to via direct forcing. A well-known
example in ocean engineering is the parametric roll of ships. Such dynamic instability can arise due
to non-linear coupling between different motion modes. For this reason, wave-activated wave energy
converters (WECs), which are free to move in multiple degrees of freedom (DoF), are particularly prone
to such dynamic instabilities.

We consider an axi-symmetric multi-body system, which consists of two rigid components (the buoy
and the slide), and is taut-moored (see Fig. 1). The buoy and the slide are connected via a pre-tension
system as well as a negative spring mechanism which allows the system to be tuned to the incident waves
and act as an effective WEC. The buoy can move along the slide, and energy is extracted from this relative
motion. The rotational symmetry axes of the buoy and the slide are always aligned. Apart from this
constraint, the rigid bodies can move in 6 DoF, though their dynamics are constrained by their mechanical
couplings and the mooring system.

If the system is sufficiently tensioned, under the action of waves all components pivot together about
the anchoring point. Thus, a simplified pendulum representation is utilised below in order to reduce
the number of DoF, such that the terms in the governing equations remain tractable and a deeper
understanding of the system dynamics can be gained. The proposed model is based on linear potential
flow theory, but allows for non-linear hydrostatics.
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Fig. 1: Left: Full system. Middle: Simplified 2 DoF system. Right: Hull approximations.

DERIVATION OF GOVERNING EQUATIONS

We represent the whole system via two rigid bodies: body 1 is the surface-piercing buoy, and body 2
is the submerged slide (assumed to extend to the sea bed), see Fig 1. Only 2 DoF are considered: the
two-body system can pivot about the anchor point, and this motion mode is denoted by θ. Body 1 can
additionally move in the instantaneous radial direction (i.e. slide along the rotational symmetry axis of



bodies 1 and 2), and this motion mode is denoted by r and referred to as the rack motion. The WEC
system is thus represented as a compound pendulum with a mass-spring-damper.

As shown in Fig. 1, we define a fixed coordinate system (x, z) which is centred at the anchoring pivot
point on the sea bed. The incident waves are assumed to propagate along the x-axis. We also define two
moving body-fixed coordinate systems. The body 1 coordinate system (x

′
, z

′
) rotates and translates with

the instantaneous buoy motions, and has its origin in the middle of the buoy’s equilibrium waterplane
area. The body 2 coordinate system (x

′′
, z

′′
) is fixed to the slide, and as such it follows the instantaneous

rotation of body 2. The transformations between the coordinate systems are

x = T(x
′
) :

(
x
z

)
=

(
(L+ r) sin θ
(L+ r) cos θ

)
+

(
cos θ sin θ
− sin θ cos θ

)(
x

′

z
′

)
,x = T(x

′′
) :

(
x
z

)
=

(
L sin θ
L cos θ

)
+

(
cos θ sin θ
− sin θ cos θ

)(
x

′′

z
′′

)
,

where L is the vertical distance between the anchor/pivot point and the still free surface, which here is
equivalent to the water depth h.

We consider conservation of angular momentum for bodies 1 and 2, and conservation of linear mo-
mentum in the instantaneous radial direction ur = (sin θ, cos θ)T for body 1, which give

mB
d2

dt2

(
T(x′CoG,B)

)
· ur = mB

(
r̈ − (L+ r + z′CoG,B)θ̇2

)
= F · ur, (1)

d

dt

(
Iθ̇
)

= θ̈I0 + rθ̈ 2mB(L+ z′CoG,B) + ṙθ̇ 2mB(L+ z′CoG,B) + rṙθ̇ 2mB + r2θ̈ mB = τ, (2)

where · denotes the dot product and I0 =
∑

i=B,S ICoG,i + (L + z′CoG,i)
2mi with the subscripts B

and S referring to the buoy and the slide respectively. As such, for the corresponding rigid body, mi,
x′
CoG,i = (0, z′CoG,i)

T and ICoG,i denote the mass, the position vector of the centre of gravity, and the
moment of inertia about an axis perpendicular to the symmetry axis and passing through x′

CoG,i. The
inertia terms have been expanded out, whereby the second expanded term in Eq. 1 represents the
centrifugal force, and the 4 non-linear coupling terms in Eq. 2 arise due to the fact that the buoy can
translate along the ur direction. F and τ are the external gravitational, buoyancy, power take-off and
hydrodynamic forces and moments, which are discussed below.

The gravitational force and the corresponding pivoting moment are straightforward to formulate, and
as such the details are omitted. The radial buoyancy force component acting on body 1 is given by

FB = ρgV (t) cos θ =ρgVB cos θ + ρg ∆V cos θ, (3)

cylindrical: =ρgVB cos θ + ρgSB

(
L(1− cos θ)− r cos θ

)
,

spherical: =ρgVB cos θ + ρgSB cos θ
(
L(1− cos θ)− r cos θ

)
− ρg cos θ

π

3

(
L(1− cos θ)− r cos θ

)3
,

where the instantaneous submerged volume of the buoy V (t) is decomposed into the equilibrium/static
submerged volume VB and the instantaneous additional submerged volume ∆V . This additional volume
is bounded by the body-fixed plane given by z′ = 0 and the still free surface given by z = L. It could be
evaluated numerically from the buoy hull geometry for arbitrary r and θ. However, here we consider an
analytical approach for simplified buoy hull shapes (see Fig. 1) to understand the role of the resultant
terms in the governing equations (see Eq. 3). The buoyancy pivoting moment acting on the surface-
piercing body 1 can also be expressed explicitly using standard results for a cylindrical segment and a
spherical cap, though the equations are more complicated. The buoyancy pivoting moment acting on the
submerged body 2 is straightforward to formulate, as the buoyancy force and the centre of buoyancy (in
body coordinates) do not change.

The power-take off (PTO) forces act along the ur direction, so induce no pivoting moment. The
PTO forces can be parametrised as FPTO = −(ρgVB − mBg) − K1r − K3r

3 − Bṙ, where the mean
component balances the buoy net/excess buoyancy, K1 and K3 represent the linear and cubic PTO
stiffness coefficients and B represents linear PTO damping, which are tunable. We note that K1 is
negative, which helps reduce the heave natural frequency by partly offsetting the hydrostatic stiffness
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Fig. 2: Rack r and pivot θ motion timeseries in regular wave conditions of H = 2 m and T = 6, 8, 10 s.

ρgSB (where SB = πR2 is the equilibrium waterplane area of the buoy with radius R). We also note
that the cubic term is characteristic of negative spring mechanisms. Wave induced hydrodynamic forces
and moments are calculated from linear potential flow theory, with the linear hydrodynamic coefficients
evaluated for the actual buoy hull geometry. We also account for viscous drag force and moment using a
quadratic relative velocity formulation.

RESULTS

The resulting system of equations is non-linear. The non-linear terms can be expanded as a Taylor series
in r and θ, which allows for an insightful analysis of the individual terms that arise at different orders.
Moreover, the approximate equations also underpin development of an instability prediction model based
on the Mathieu equation. The approximate third-order r equation becomes(
mB + ar(∞)

)
r̈ +

∫ t

−∞
Krad,r(t− τ)ṙ(τ)dτ + Bṙ + (K1 + ρgSB)r (4)

− θ2 1

2

(
gmB − ρgVB + ρgLSB

)
− θ̇2mB(L+ z′CoG,B)− Fdrag

cylindrical: − rθ̇2mB − rθ2
1

2
ρgSB +K3r

3 = Fexc,r spherical: − rθ̇2mB − rθ2ρgSB + (K3 −
π

3
ρg)r3 = Fexc,r

where the linear terms appear on the first line, and include the radiation impulse response function Krad,r

and the added mass at infinite frequency ar(∞). The quadratic terms appear on the second line, where

we identify second-order excitation-like terms proportional to θ2 and θ̇2. These can give rise to different
harmonics in the r response: a mean offset in r, as well as motions at sum and difference frequencies of
the θ oscillations. Their effect is manifested in the r time series plots in Fig. 2 (see T = 8, 10 s where

the θ motions are large). The two hull approximations begin to deviate at third order. The rθ̇2 and rθ2

terms represent time-varying stiffness terms, while the r3 term constitutes a non-linear restoring force.
The third-order θ equation is given by(

I0 + aθ(∞)
)
θ̈ +

∫ t

−∞
Krad,θ(t− τ)θ̇(τ)dτ + Kθθ (5)

− θr
(
gmB − ρgVB + ρgLSB

)
+
(
θ̇ṙ + θ̈r

)
2mB(L+ z′CoG,B)−Mdrag

cylindrical: − θr2 1

2
ρgSB +

(
2θ̇rṙ + θ̈r2

)
mB + θ3

(
− 1

6
Kθ +

1

2
ρgSBL

2 +
1

2
ρgS11

)
= Mexc,θ

spherical: − θr2ρgSB +
(

2θ̇rṙ + θ̈r2
)
mB + θ3

(
− 1

6
Kθ +

1

2
ρgSBL

2
)

= Mexc,θ

where Kθ = ρgS11+
∑

i=B,S ρgVi(L+z′CoB,i)−gmi(L+z′CoG,i), with S11 = π
4R

4 and x′
CoB,i = (0, z′CoB,i)

T

denoting the second waterplane moment and the equilibrium centres of buoyancy respectively. At second
order, θr, θ̇ṙ and θ̈r represent time-varying stiffness, time-varying damping and time-varying inertia
components. Systems with a periodically-varying stiffness coefficient are well studied and according to
Floquet theory can admit exponentially growing solutions, depending on the magnitude and frequency
of this parametric excitation and the amount of linear damping (see e.g. [1]). The non-linear cubic
stiffness θ3 and the quadratic damping terms keep the growing θ oscillations bounded (see e.g. [2] and



4 6 8 10 12 14 16 18 20 22

T (s)

0

0.5

1

1.5

2

2.5

3

3.5

H
 (

m
)

rack r : 2 DoF time domain model

0.2
0.4

0.4

0.6

0.6

0.8

0.8

1

1

1.2
1.2

1.2

1.2

1.
2

1.2

1.4

1.4

1.4

1.4

1.4

1.
4

1.
4

1.6

1.
6 1.6

1.
6

1.6

1.
6

1.
6

1.6

1.
8

1.8

1.
8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 6 8 10 12 14 16 18 20 22

T (s)

0

0.5

1

1.5

2

2.5

3

3.5

H
 (

m
)

rack r : 1 DoF frequency domain model

0.2
0.4

0.4

0.6

0.6

0.8

0.8

1

1

1.2

1.2

1.4

1.4

1.4

1.6

1.6

1.6

1.8

1.
8

1.8

1.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 6 8 10 12 14 16 18 20 22

T (s)

0

0.5

1

1.5

2

2.5

3

3.5

H
 (

m
)

rack r : 2 DoF time domain model (no  excitation)

0.2
0.4

0.4

0.6

0.6

0.8

0.8

1

1

1.2

1.2

1.
2

1.2

1.4

1.4

1.
4

1.4
1.4

1.
4

1.
4

1.
4

1.
4

1.6

1.
6

1.6

1.6

1.
6

1.6
1.

8

1.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 6 8 10 12 14 16 18 20 22

T (s)

0

0.5

1

1.5

2

2.5

3

3.5

H
 (

m
)

rack r : 1 DoF frequency domain model

0.2
0.4

0.4

0.6

0.6

0.8

0.8

1

1

1.2

1.2

1.4

1.4

1.4

1.6

1.6

1.6
1.8

1.
8

1.8

1.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 6 8 10 12 14 16 18 20 22

T (s)

0

0.5

1

1.5

2

2.5

3

3.5

H
 (

m
)

rack r : 2 DoF time domain model

0.2
0.4

0.4

0.6

0.6

0.8

0.8

1

1

1.2
1.2

1.2

1.2

1.
2

1.2

1.4

1.4

1.4

1.4

1.4

1.
4

1.
4

1.6

1.
6 1.6

1.
6

1.6

1.
6

1.
6

1.6

1.
8

1.8

1.
8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 6 8 10 12 14 16 18 20 22

T (s)

0

0.5

1

1.5

2

2.5

3

3.5

H
 (

m
)

rack r : 1 DoF frequency domain model

0.2
0.4

0.4

0.6

0.6

0.8

0.8

1

1

1.2

1.2

1.4

1.4

1.4

1.6

1.6

1.6

1.8

1.
8

1.8

1.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 6 8 10 12 14 16 18 20 22

T (s)

0

0.5

1

1.5

2

2.5

3

3.5

H
 (

m
)

pivot : 2 DoF time domain model

1

1

1 2 2

2

2
2

3

3

3

3

3

3

4

4 4

4

4

4

4

5

5

5

5

5

6

6

6

6

6

7

7

7

7

8
8

8

9
9

0

1

2

3

4

5

6

7

8

9

10

11

4 6 8 10 12 14 16 18 20 22

T (s)

0

0.5

1

1.5

2

2.5

3

3.5

H
 (

m
)

pivot : 1 DoF frequency domain model

1

1 2

2

2

3

3

3

4

4

4
5

5

5

6

6

7
8

0

1

2

3

4

5

6

7

8

9

10

11

4 6 8 10 12 14 16 18 20 22

T (s)

0

0.5

1

1.5

2

2.5

3

3.5
H

 (
m

)
pivot : 2 DoF time domain model (no  excitation)

1

1

1

1

1

1

1
1

2

2

2

2 2

2

2
2

3

3 3
3

3

3
4

4

4

4

4

4

5

5

5

5
5

5

6

6

6

6

6

7

7

78

0

1

2

3

4

5

6

7

8

9

10

11

4 6 8 10 12 14 16 18 20 22

T (s)

0

0.5

1

1.5

2

2.5

3

3.5

H
 (

m
)

pivot : 1 DoF frequency domain model

1

1 2

2

2

3

3

3

4

4

4

5

5

5

6

6

7
8

0

1

2

3

4

5

6

7

8

9

10

11

4 6 8 10 12 14 16 18 20 22

T (s)

0

0.5

1

1.5

2

2.5

3

3.5

H
 (

m
)

pivot : 2 DoF time domain model

1

1

1 2 2

2

2
2

3

3

3

3

3

3

4

4 4

4

4

4

4

5

5

5

5

5

6

6

6

6

6

7

7

7

7

8
8

8

9
9

0

1

2

3

4

5

6

7

8

9

10

11

4 6 8 10 12 14 16 18 20 22

T (s)

0

0.5

1

1.5

2

2.5

3

3.5

H
 (

m
)

pivot : 1 DoF frequency domain model

1

1 2

2

2

3

3

3

4

4

4

5

5

5

6

6

7
8

0

1

2

3

4

5

6

7

8

9

10

11

Fig. 3: Standard deviation of rack r in m (top) and pivot θ in degrees (bottom). Left: 2 DoF time
domain model. Middle: 2 DoF model, with wave excitation in θ suppressed. Right: 1 DoF models.
Stability boundaries of the Mathieu equation are shown in red.

[3]). We note that 1
2ρgS11 is more than two orders of magnitude smaller than the other two θ3 coefficients

combined. For this reason, the limiting amplitudes of the unstable θ motions will not differ greatly for
the two different hull approximations (see T = 8, 10 s in Fig. 2).

Fig. 3 presents results from a large range of regular wave conditions. In the θ plots, the first two
instability branches are clearly seen in the time domain model results, and these can be successfully
predicted by the stability boundaries of the Mathieu equation. These two branches are centered at

T = 1
2Tnθ, Tnθ with Tnθ = 2π/

√
Kθ

I0+aθ(ωn,θ)
being the pivot/pendulum natural period. The unstable θ

motions in the first branch exhibit a period-doubling response (see Fig. 2). The accompanied reduction
in rack motion within the first instability branch can be seen by comparing the time domain results to the
solution from a 1 DoF frequency domain r model, which approximates the rack response in the absence of
coupling with θ. The compound pendulum model gives valuable insight into the dynamics of the floating
WEC, and provides an efficient tool for discovering motion instabilities in early design stages. Due to
its efficiency, it can be used in studies investigating influence of different system parameters, as well as
for example to find optimum PTO coefficients (as these are likely to differ under the influence of the θ
instability). At the workshop we will present further results extended to include irregular wave conditions.
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