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1 Introduction

Freak wave (also called rogue wave or extreme wave) is an anomalous, short-term wave that is much higher than
expected for the sea state. Over the past thirty years, the freak wave has attracted considerable attention, and
several different mechanisms have been found to be responsible for its generation (see the general reviews in
Dysthe et al., 2008; Onorato et al., 2013). In absence of specific environmental forcing, one possible mechanism
is energy focusing introduced by second-order nonlinearity. On the other hand, the modulational instability,
(also called Benjamin-Feir instability, Benjamin & Feir, 1967) enhanced by third-order nonlinearity also plays
a significant role, especially for deep-water long-crested waves (Tang et al., 2021).

The modulational instability of a plane wave to perturbation sidebands is a kind of four-wave quasi-resonant
interactions

2 ~k1 − ~k3 − ~k4 = 0, 2ω1 − ω3 − ω4 = O(ε2), (1)

where ~ki are the wavenumbers, ωi are the angular frequencies and ε is the wave steepness. Considering a plane
wave ~k1 with two perturbation sidebands ~k3 = ~k1 −~k and ~k4 = ~k1 +~k (~k is the perturbation wavenumber), the
energy is transferred between different components through four-wave quasi-resonance. This process can be well
described by the Zarkharov’s equation (ZE) or the nonlinear Schrödinger equation (NLSE). The amplitudes of
two perturbations were found to grow exponentially at the expense of the plane wave. As a result, large waves
are likely to be formed due to the strong nonlinear focusing. Over the past decades, the evolution of wave
amplitude has been investigated theoretically, numerically, and experimentally (e.g. Waseda & Tulin, 1999; Ma
et al., 2012). In contrast, the phase evolution of each wave due to the modulational instability has received less
attention.

Here, we study the modulational instability through ZE and a higher-order spectral (HOS) method. Par-
ticular attention is paid to the phase evolution. The results of ZE with the support of HOS simulations show
a phase locking phenomenon in the modulational instability. To the authors’ knowledge, it is the first time to
show this feature of modulational instability.

2 Theoretical analyses

The four-wave reduced equation for pure gravity waves from ZE reads (Zakharov, 1968)

i∂tB1 =

∫
T1234B

∗
2B3B4δ1+2−3−4 exp (i∆1234t) dk2,3,4, (2)

where Bi is the wave action amplitude and its relation to wave amplitude is ai =
√

2ωi/g|Bi|. Considering the

stability of wave ~k1 with two collinear disturbances at ~k3 = ~k1 +~k and ~k4 = ~k1−~k, the evolution equations are
obtained as follow

i∂tB1 = (Ω1 − ω1)B1 + 2T1134 exp(i∆1134t)B
∗
1B3B4, (3)

i∂tB3 = (Ω3 − ω3)B3 + T1134 exp(−i∆1134t)B
2
1B

∗
4 , (4)

i∂tB4 = (Ω4 − ω4)B4 + T1134 exp(−i∆1134t)B
2
1B

∗
3 , (5)

and

Ω1 = ω1 + T1111 |B1|2 + 2T1313 |B3|2 + 2T1414 |B4|2 , (6)

Ω3 = ω3 + 2T1313 |B1|2 + T3333 |B3|2 + 2T3434 |B4|2 , (7)

Ω4 = ω4 + 2T1414 |B1|2 + 2T3434 |B3|2 + T4444 |B4|2 , (8)
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where ∆1134 = 2ω1 − ω3 − ω4 is the detuning factor, Ωi are the nonlinear frequencies and T represents the
interaction kernel.

Assuming the amplitudes of sidebands are much smaller than that of plane wave |B3|, |B4| � |B1|, the
evolution equations are reduced to

i∂tB1 = T1111 |B1|2B1, (9)

i∂tB3 = 2T1313 |B1|2B3 + T1134e
i−∆1134tB2

1B
∗
4 , (10)

i∂tB4 = 2T1414 |B1|2B4 + T1134e
i−∆1134tB2

1B
∗
3 . (11)

The solution of B1 is obatained from equation (9) as

B1 = β1e
−iT1111β

2
1t, β1 = B1(0), (12)

To solve equations (10) and (11), Mei et al. (2005) made an assumption that the solutions follow the
following expressions

B3 = β3e
−i[ 1

2 ∆1134+T1111β
2
1+σ]t, β3 = B3(0), (13)

B4 = β4e
−i[ 1

2 ∆1134+T1111β
2
1−σ

∗]t, β4 = B4(0). (14)

The eigenvalue σ is given by
σ = (T1313 − T1414)β2

1 ±D1/2, (15)

where

D =

[
1

2
∆1134 + (T1111 − T1313 − T1414)β2

1

]2

− T 2
1134β

4
1 . (16)

If the value of D is positive, the modulus of B3 and B4 is stable with time. But, if D is negative, B3 and B4

tends to increase exponentially with time. The value of growth rate is given by the imaginary part of σ, i.e.,
Im[D1/2].

Besides, from equations (12), (13) and (14), the phases of the plane wave and two sidebands are given by

ϕ1 = −T1111β
2
1t+ ϕ1(0), (17)

ϕ3 = −
[

1

2
∆1134 + T1111β

2
1 + Re[σ]

]
t+ ϕ3(0), (18)

ϕ4 = −
[

1

2
∆1134 + T1111β

2
1 − Re[σ∗]

]
t+ ϕ4(0). (19)

The individual phase of each wave is supposed to change linearly with time, and the interaction phase follows

ϕ = 2ϕ1 − ϕ3 − ϕ4 = 2ϕ1(0)− ϕ3(0)− ϕ4(0) + ∆1134t. (20)

Considering the detuning factor is ∆1134 ∼ O(ε2), the value of ∆1134t is almost negligible in the initial stage.
Thus, the interaction phase is expected to be locked at ϕ = ϕ(0).

However, these results of wave amplitude and phase are limited to the assumption of the expression of B3

and B4. To overcome this, we directly solve the differential equations (10) and (11) by the 4th-order Runge-
Kutta method. Both of these direct numerical results (ZE-NUM) and the results from the analytical expressions
(ZE-ANA) are reported in the present paper.

3 Phase-resolved numerical simulations

We also conducted numerical simulations of modulated wave groups by the HOS method (Dommermuth &
Yue, 1987; West et al., 1987). This phase-resolved method directly solves the Euler equation with the nonlinear
surface boundary conditions in Zakharov’s form. HOS method has been widely applied in wave modelling (e.g.
Liu & Zhang, 2019). To improve the computing efficiency, we developed HOS method in house combined with
a GPU-accelerated computing technique.

The imposed modulated wave group is as follows

η = a1cos(k1x+ ϕ1(0)) + a3cos(k3x+ ϕ3(0)) + a4cos(k4x+ ϕ4(0)). (21)

We considered a typical case, a plane wave with k1 = 1 and a1 = 0.12 is modulated by a lower sideband
at k3 = 1.20 and a upper sideband at k4 = 0.80, i.e. ε = k1a1 = 0.12 and k/k1 = 0.20. The amplitude
ratio between the plane wave and sidebands is 0.01. The initial phase of perturbation sidebands is fixed at
ϕ3(0) = ϕ4(0) = −π/4 where the maximum growth rate of sidebands is achieved (Benjamin & Feir, 1967).
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Figure 1: Temporal evolution of the amplitude (a) and phase (b) of each wave from HOS simluations. The
wave amplitudes are normalized by the initial amplitude of plane wave a1(0). i = 1(− · −), 3(−−−), 4(−−−).
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Figure 2: (a) Temporal evolution of the normalized mean amplitude (a3 +a4)/2a1(0) (b) temporal evolution of
the sine of interaction phase ϕ = 2ϕ1−ϕ3−ϕ4. The initial phases are ϕ3(0) = ϕ4(0) = −π/4. The experimental
results from Tulin & Waseda (1999) are also shown in panel (a) by the circulars. HOS(−·−), ZE-NUM(−−−),
ZE-ANA(−−−).

The evolutions of this modulated wave group over deep water depth are simulated in a one-dimensional
domain of 10λ1 length with periodic boundary conditions (λ1 = 6.28m is the wave length corresponding to
k1 = 1). We have to remark that the resolution in wavenumber domain depends on the length of computation
domain. Here, we get the resolutions dk = 0.1, which allows us to accurately extract the sidebands (k3 = 0.80
and k4 = 1.20). To focus on the effect of modulational instability, third-order expansion in the wave steepness
of the velocity potential and the vertical velocity on the free surface (i.e. M=3) are included. 256 nodes are
used to capture the surface elevation and velocity potential, namely, about 25 nodes for every wave length.

Figure 1(a) and (b) show the temporal evolutions of amplitude and phase of each wave, respectively. The
wave amplitudes are normalized by the initial amplitude of plane wave a1(0), and the time t is normalized by
wave period of plane wave T1. Results show the amplitudes of sidebands grow exponentially with time and the
phases of each wave vary linearly. These results are in agreement with the predictions of ZE-ANA. The wave
steepness is small during the simulations, so the exponential growth of wave amplitude and linearly variation
of wave phase are still visible for longer times. Besides, the amplitude evolutions of upper sideband and lower
sideband are in good consistent during the simulation.

To quantitatively compare the HOS results with ZE, figure 2 shows the temporal evolution of the normalized
mean amplitude (a3 +a4)/2a1(0) and the sine of interaction phase ϕ = 2ϕ1−ϕ3−ϕ4 from HOS, ZE-NUM and
ZE-ANA. Experimental observations from Tulin & Waseda (1999) are also plotted in panel (a) for reference.
They have been transferred from spatial domain to temporal domain based on the group velocity of the plane
wave. The amplitude growths of sidebands from different methods are in good agreement with experimental
results, which provide a direct validation of the present numerical simulations and analyses. The results for
interaction phase from HOS, ZE-NUM and ZE-ANA are also in good agreement, and a clear phase locking
phenomenon is observed.

We further changed the initial phase of sidebands to assess its effect on phase locking and amplitude
growth of modulational instability. Apart from the above test case ϕ3(0) = −π/4 and ϕ4(0) = −π/4, the
modulated wave groups with ϕ3(0) = ϕ4(0) = 0, π/4 and π/2 are modelled. The temporal evolution of mean
amplitude (a3 + a4)/2 and interaction phase 2ϕ1 − ϕ3 − ϕ4 are presented in figure 3. As illustrated before, if



Figure 3: The temporal evolution of mean amplitude (a3 +a4)/2a1(0) and interaction phase 2ϕ1−ϕ3−ϕ4 with
initial phase ϕ3(0) = ϕ4(0) = 0, π/4 and π/2. HOS(− · −), ZE-NUM(−−−), ZE-ANA(−−−).

ϕ3(0) = ϕ4(0) = −π/4, the mean amplitude of sidebands increases exponentially with time and the interaction
phase stays constant. However, when the initial phases ϕ3(0) and ϕ4(0) are not equal to −π/4, HOS results
with the support of ZE-NUM show that, the interaction phase changes with time in the initial stage and then
stay constant as it reaches ϕ = π/2. Meanwhile, the mean amplitude of perturbation sidebands changes non-
exponentially with time for short times. Once the interaction phase increases to lock at ϕ = π/2, the amplitude
tends to increase exponentially. Note that, for the case with ϕ3(0) = ϕ4(0) = π/4, the time of reaching steady
in HOS are larger than in from ZE-NUM. Except for this the results of HOS and ZE-NUM are in excellent
agreement. The results of ZE-ANA are not applicable here due to the assumption of form of solutions. Besides,
for all the test cases, the exponential growth rates of the sidebands’ amplitude are in good agreement, which
suggests that the growth rate is independent on the initial phases of sidebands. More results will be presented
in the workshop.
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