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We propose a possible marine platform based on several concentric, flexible circular tori as support structure for floating solar 
islands (Figure 1). The tori are connected by pre-tensioned elastic bands. The structure will support a membrane deck that can 
carry light-weight cargo (such as solar panels) in waves. The main idea behind the concept is that it follows the waves to a large 
extent, thereby reducing need for airgap and offering a cost-efficient marine platform alternative. Several islands can be moored 
in framework type of mooring systems such as to cover large areas. Preliminary wave-tank experiments indicate that the 
concept is promising. 

  
Figure 1. Multi-torus solar island model. Left: Preliminary experiments at NTNU 2018 and 2019. 2𝑅ଵ = 1m. Cross-sectional diameter 2𝑐 =

0.032m. Torus axis-to-axis distance 2𝑝 = 0.05m. 𝐸𝐼 = 0.847Nmଶ. Right: Sketch with parameter explanations. The coordinate system is right-
handed, such that the 𝑧 −axis is positive upwards, and the origin is at the still water level. Waves travel along the positive 𝑥 −axis. 

Although the structure follows vertically even quite steep regular waves very well, tests in irregular seas shows that over-
topping occurs. Also, present results and published [1] shows that non-negligible super-harmonic accelerations occur. These 
may induce resonant flexible motions of the deck, for instance. This motivates development of a rational, combined 
hydrodynamic and structural model of the multi-torus system. The present text presents a step towards this. 

Theory. The tori are coupled both structurally and hydrodynamically. We consider vertical motions only; heave, pitch, and 
flexible modes. The hydrodynamic interaction between the tori is investigated theoretically by means of extending the zero-
frequency limit theory [2] to express the hydrodynamic interaction in terms of generalized cross-term added mass loads and 
generalized wave excitation loads. Vertical motion 𝑤  are assumed small relative to 𝑅 such that we can represent the vertical 
motion 𝑤 of each torus 𝑘 = 1, . . , 𝐾 by a series of orthogonal modes, 
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We model each torus by the modified Euler beam model [3], 
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Here 𝑚 = 0.5𝜌𝜋𝑐
ଶ is the structural mass per unit length of the torus, 𝐸𝐼 the bending stiffness, and 𝑓 represent the external 

forces on torus 𝑘; wave excitation loads, added mass loads and point loads by elastic bands and moorings. 𝑇௫,(𝑠) is the axial 
tension in the torus, caused by mooring lines and connecting bands. The (hydrostatic) restoring load is given explicitly as 
−2𝜌𝑔𝑐𝑤. We assume that all tori have the same cross-sectional diameter 𝑐, mass per unit length 𝑚 and bending stiffness 𝐸𝐼 
in the following. By multiplying with cos 𝑚𝛽 and integration from 0 to 2𝜋 we decouple the modes,  
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where 𝑓,
 is the generalized load representing the wave loads and connecting bands. We have neglected the axial tension 

term to save space. In the following we assume steady-state solutions 𝑏, = ℜ൫𝑎,𝑒ିఠ௧൯. The incident deep-water wave 



velocity potential is given by 𝜙(𝑟, 𝛽, 𝑧, 𝑡) =
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ఠ
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ୀ cos 𝑛𝛽)𝑒ିఠ௧ , where α = 2 and α୬ஹଵ = 1. 𝜁  is the 

incident wave amplitude, 𝜔 the wave frequency and 𝐽 Bessel functions of the first kind and order 𝑛. 

Radiation problem. We use the far-field solution by [2]. This is based on a slender-body approximation, justified by 𝑐/𝑅 ≪ 1. 
Due to the zero-frequency limit approximation, the vertical motions of torus 𝑗 are source-like, and the far-field flow is 
represented by a three-dimensional source distribution in the center-axis 𝑧 = 0, 𝑟 = 𝑅. The undisturbed pressure at torus 𝑘 is 
then given by 
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where the source strength amplitude 𝑄, = 4𝑐�̇�, was found by an asymptotic expansion and matching between near- and far-
field approximations. The flow induced by the vertical torus motion is source-like, so that the flow induced in the far-field is 
horizontal at 𝑧 = 0. Due to the slenderness of the tori, torus 𝑘 will experience a uniform (oscillating) current and behave as a 
horizontal dipole. We can therefore neglect the disturbances it causes and integrate the (undisturbed) pressure 𝑝 = −𝜌𝜕𝜑

ி/𝜕𝑡 
multiplied with the modal shape cos 𝑛𝛽 of torus 𝑘 ≠ 𝑗 to obtain the (coupled added mass) load induced on it, and the added 
mass coefficients become  
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where 𝜅 = 1 and 𝜅୬ஹଵ = 2. For 𝑘 = 𝑗 we use the added mass as obtained by the single torus theory [2]. The integral is solved 
numerically. Note that orthogonality of modes implies no hydrodynamic interaction between different modes, i.e., motion in 
mode 𝑛 of torus 𝑗 will induce loads on torus 𝑘 in mode 𝑛 only. Therefore, the added mass coefficients are indexed by 𝑛 only. 
This fact reduces the computational effort. 

Diffraction problem. The diffraction force involves a (linear) boundary value problem with body velocity equal to minus the 
incident wave velocity, and there is therefore a hydrodynamic interaction load due to the other tori, similarly as for the radiation 
problem. The zero-frequency limit wave excitation loads is  
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The connecting bands. We represent the point loads acting on torus 𝑘 by a sum of Dirac delta functions ∑ 𝑃,𝛿(𝑠) , where 𝑃,  is 
the point load and 𝑠 = 𝑅𝛽. It is important that the delta function has unit as the inverse of its argument, and that 𝛿(𝑠) =

𝛿(𝑅𝛽) = 𝛿(𝛽)/𝑅. The point loads are modelled as the pre-tension 𝑇, multiplied by the local angle 𝛼 =

ቀ𝑤(𝛽 , 𝑡) − 𝑤(𝛽 , 𝑡)ቁ /2(𝑝 − 𝑐), 

𝑃, ≃ −𝑇  
𝑤(𝛽 , 𝑡) − 𝑤(𝛽 , 𝑡)

2(𝑝 − 𝑐)
, 

assuming the bands stay pre-tensioned. Assuming Hooke’s law, the vertical restoring loads due to elasticity of the bands will 
introduce loads proportional to 𝛼

ଷ only and are therefore negligible. Assuming steady-state solutions, we finally obtain the 
equations of motion for each torus 𝑘 and for each mode 𝑛, 
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All modes of all tori are coupled here. However, analyzing the sum over 𝑙, given the present arrangement of connecting bands, 
modes 𝑛 = 0, 1 and 2 (heave, pitch and first flexible mode) are coupled with mode 𝑛 = 8, 7 and 6 and some higher modes, 
respectively. Assuming motions of modes 𝑛 ≥ 6 are small, we can obtain separate systems of 𝐾 equations for each of the modes 
heave and pitch, meaning coupled equations of motions for 𝐾 tori, but without coupling with other modes. 

Results. We first present results for the zero-frequency limit added mass. We use a case study that corresponds with the 
experiments indicated in Figure 1 which has 𝐾 = 5 tori with torus radii 𝑅 = [25 − (𝑘 − 1)5] m and cross-sectional radius 𝑐 =

0.8 m. Added mass terms are presented as function of mode number 𝑛 in Figure 2. The zero-frequency theory is in general in 
good agreement with the numerical simulations using a higher-order BEM version of WAMIT. The agreement is best for the off-
diagonal terms. This show that the assumptions we made behind the zero-frequency limit is valid for this case. Also, the results 
illustrate that the hydrodynamic interaction is not negligible.  

 



 
Figure 2. Zero-frequency limit non-dimensional added mass 𝑎,,/𝑚 for the outer torus 𝑘 = 1. The blue curve represents the diagonal added 
mass [2]. The red, black and green curves represent the cross-coupling added mass terms for the outer torus 1 due to forced motion of torus 𝑗 =
2, 3 and 4, respectively. 

However, the zero-frequency limit theory is not sufficient for analysis of the motions, except for large wavelength-to-torus 
diameter ratios, say 𝑘𝑅ଵ < ~1.5. Examples of normalized added mass, damping, wave excitation and motion RAOs for heave 
and the first flexible mode of the outer torus 1 are presented in Figure 3. Damping coefficients are not presented for clarity. 
There are similar strong frequency-dependency on added mass for the multi-torus as previously reported for single torus by [4] 
as one can expect, although shifted in frequency. It is intriguing that the lowest cancellation wave number in the RAOs (A) differ 
from that of the wave excitation forces. The reason is the hydrodynamic coupling between the tori. 
 

 
Figure 3. Non-dimensional added mass, wave excitation and motion RAOs as obtained by WAMIT for a single torus with the same properties as 
the outer torus 1, and outer torus 1 of the five-torus case. 

 



In the experiments, the model diameter was 2𝑅ଵ = 1 m and the tank width 2.5 m. Some of the irregularities of the experimental 
RAOs marked (B) are caused by tank wall reflections. This is demonstrated in Figure 4, where WAMIT simulations with tank walls 
are included. It is important to note that there is hydrodynamic coupling between modes in case of tank walls; all even modes 
𝑛 = 0,2,4, … are coupled due to symmetry around the 𝑦𝑧 −plane, and all odd modes 𝑛 = 1,3,5, … are coupled due to anti-
symmetry around the same plane. This means all odd or even modes must be considered simultaneously.  

 

 
Figure 4. Motion RAOs in heave and the first flexible mode of the outer torus. Simulations with and without tank walls. 
 

The hump marked by (C) and shift indicated by (D) are not explained by tank wall effects. The connecting bands represent one 
candidate. The heave RAO of torus 1 as predicted by (7) with 𝑇 = 1N model scale (scale 1:50) is presented in Figure 5. The 
bands cause a clear shift. However, the shift is not as large as in the experiments, and a larger pre-tension is not thought 
realistic. Further, it does not predict the shift at (E). For pitch and the first flexible mode (not shown), the effect of the 
connecting bands is very small.  

Another candidate to the 
discrepancies (C, D) is coupling effects 
with horizontal modes. There is a non-
negligible hydrodynamic coupling 
between surge and pitch for 𝑘𝑅ଵ >
~3, despite the low draft. A flexible 
radial motion that is proportional to 
cos 𝑛𝛽 will cause a pressure field 
proportional to this mode shape (in 
open waters). This will cause a 
hydrodynamic load on the vertical 
mode cos 𝑛𝛽. We have not yet 
investigated this but will attempt so by 
including also horizontal flexible 
modes in WAMIT in further work. Figure 5. Heave RAO of outer torus 1, with and without connecting bands as in Eqn. (7). 

The axial term in (2) will cause so-called Hoop stresses which contribute dynamically. One can account for these in a rational 
manner as in [2]. This must also be investigated as a possible cause. Waves of wave steepness 𝐻/𝜆 = 1/30 and 1/60 were 
tested to investigate the effect of wave nonlinearity, but the RAOs are very similar. The wave steepness plays a role in over-
topping, which is mainly a consequence of the nonlinearity of the incident wave and nonlinear wave diffraction and radiation by 
the tori. We emphasize that tank wall effects are of importance and must be accounted for. 
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