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1. Introduction. The present study is focused on hydrodynamic pressure and the total force acting on
an elastic body entering water. The two-dimensional coupled problem is solved within the Wagner model
of water impact using the normal mode method. This approach provides the amplitudes of the so-called
dry modes of the elastic surface as functions of time for given initial shape of the structure, its elastic
characteristics, and conditions of impact. The distribution of the hydrodynamic pressure along the wetted
part of the body surface is not evaluated in this approach. This approach provides deflections of the body
and elastic stresses in it. The pressure can be recovered a posterior: by using the structural model as an
external load causing the obtained deflections. This method is reasonable and similar to the idea of the
equivalent static slamming pressure for direct strength assessment and scantling determination, see ABS
Guide(2020) and Zhu et al. (2020). A problem is that the normal mode method provides the pressure as a
series with respect to the dry modes of the body, where the convergence of the series is poor. This approach
is not practical for studies of the hydrodynamic loads during elastic impacts. The total force is also given
by a series, convergence of which is better than the convergence of the series for the pressure, but still weak.
If the stresses in the impacting structure due to water impact are known, one does not need pressures to
access the structural integrity of the structure and possible damage to the structure.

Problems with hydrodynamic pressure due to elastic impacts occur also in experimental measurements.
Faltinsen (1997) wrote ”Kvalsvold et al. (1995) presented the measured peak pressures from all the different
drop tests as a function of drop speed for different curvatures of the waves and impact positions. There
was a tremendous scatter in the pressures at a given drop speed. The measured peak pressure results
do not encourage the designer to treat the impact problem in a deterministic way even in deterministic
environmental conditions. This study indicates that wetdeck slamming may be treated deterministically in
deterministic environmental conditions as long as no attention is paid to the peak pressure.”

However, in some problems, the impact pressure is needed to select a right model of elastic impact.
Vibration of the elastic structure both during the impact stage, when the surface of the structure is wetted
partly, and during the so-called free-vibration stage, when the structure is completely wetted, the loads are
not as high but the structure continues to vibrate, may cause cavitation in the impact region, which requires

another model of impact. . .
In the present study, we do not include cavita-

tion into our impact model as well. Our model is
similar to that used by Kvalsvold (1994) and Faltin-
sen (1997). We introduce a technique which accu-
rately describes the pressure distribution in the wet-
ted part of the impacting structure during the ini-
tial impact stage, when the wetted region expands
at a high rate. The technique is illustrated for the
2D symmetric problem of elastic wedge impact at a
constant speed, see figure 1. The deflections of the
wedge platings are obtained by the method presented in Khabakhpasheva & Korobkin (2013). The pressure
decomposition into its singular and regular parts follows the paper by Korobkin(1998). Quick convergence
of the regular part of the hydrodynamic pressure with the number of modes is demonstrated. This decom-
position was found also helpful for prediction of the total force acting on the entering wedge.

Fig.1. Elastic wedge impact onto water and notation.

2. Formulation of elastic wedge impact problem and the pressure singularity. An elastic
wedge with small deadrise angle v penetrates into water at constant speed V. The wedge plates are simply



supported at their edges. The problem is formulated in dimensionless variables within the Wagner model,
see Khabakhpasheva & Korobkin (2013) for full details. The length L of the side plate of the wedge is taken
as the length scale, (L/V)sin~y as the time scale, Lsin+y as the displacement scale, and pV?sin~!~ as the
pressure scale, where p is the liquid density. The dimensionless pressure in the flow region, y < 0, is given
by the linearised Bernoulli equation, p(x,y,t) = —p(x,y,t). The velocity potential p(x,y,t) is the solution
of the boundary value problem,

Vip=0 (y<0), =0 (y=0,|z|>c?), @, =—-1+w(z,t) (y=0,|z|<c(t)), (1)

where the potential decays at infinity, ¢ — 0 as 22 + y? — oo, and is continuous up to the boundary of the
flow region. The dimensionless deflection w(x,t) in (1) is governed by the equations

=p(z,0,t) (Jz| <1), w=wg =0 (x==%1,0), w=w=0 (t=0), (2)

where a = (pyh)/(pL), B = Eh®sin®~/(12pL3V?2), py is the density of the wedge material, h is the plate
thickness, and F is Young’s modulus of the plate elasticity. The pressure in (2) is zero outside the wetted
part of the wedge, |x| < c(t), where the function c(t) is related to the plate deflection by the Wagner
condition,

T /2
c(t) = Et - / wlc(t) sin 6, t]db. (3)
0
Within the method of normal modes, the plate deflection is sought in the form
)= an(t)u(x), (2] <1), valx)=sin(Alz]), A, =mn. (4)

The dry modes, ¥, (x), of the lSimply supported plates are orthonormal. The coupled problem (1)-(3) is
reduced to an infinite system of ordinary differential equations for the coefficients a,(t), which is truncated
down to N,, modes, and integrated numerically by the fourth-order Runge-Kutta method, see Khabakhpa-
sheva & Korobkin (2013) for full details.

When the deflection (4) has been obtained, the pressure can be approximately evaluated using the plate
equation (2),

Nm Nm
p(2,0,t) = a Y dn()hn(x) + B Nyan(t)tn(@). (P1)
n=1 n=1

The formula (P1) gives good approximation of the pressure during the free-vibration stage but it is not
acceptable during the impact stage, when the theoretical pressure is square-root singular at the contact
points = +c¢(t), see the numerical results below. To improve the convergence of (P1) during the impact
stage, we use the following relation between the boundary values of the derivatives . (z,0,t) and ¢, (z,0,t),

v [ e e e [ PR )

which follows from the Hilbert formula for analytical functions in y < 0. Using (1) and (4), we find

M + O( 2 — 1‘2)7 A(t) =1- z i dn(t)Dn, Dn(C) = 7r<in[c(t) sin 9]d9 (6)
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where —c¢ < x < ¢ and |z| — ¢(t). Therefore,

Aeé
w(z,0,t) DV =22+ 0([? —2%)2), p(x,0,1) = Ps(,t) + O(V/e — 2?), Ps(a,1) = ———
2 —ux
and equation (P1) can be written as

Nm
p(x,0,t) = Pg(x,t) + Pr(z,t), Pr(x,t) = Z (adn + BAia,, — 2AcéDn)wn(x). (P2)

n=1



The formulae (3), (6) and (P2) with the singular Ps(x,t) and regular Pgr(z,t) components of the pressure
in the contact region can be used for any symmetric elastic body with proper orthonormal modes 1, (x).
The corresponding formulae for the total force F'(t) are

Nm c
F() =Y Cufai, + 5X4a,). Cole) = 2 /0 (@) da, (F1)
n=1

Nm
F(t) = mA(t)eé + Y Cy (adn +Bxta, — A(t)cc'Dn). (F2)
n=1
The formulae (P1) and (F1) are valid for both impact stage and free-vibration stage, however the formulae
(P2) and (F2) are only for the impact stage.

3. Numerical results and conclusion. The results of numerical calculations are shown for elastic
wedge with 10 degrees deadrise angle and aluminium platings of thickness 2 cm and length 80 cm impacting
the initially calm water surface at speed 4 m/sec.
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Fig.2. Pressure evolution at x = 0.25 by (P1) and (P2).

Fig.2a shows the pressure evolution at x = 0.25 by (P1) and (P2) during the impact stage. The pressures
by (P1) converge to that by (P2) but very slow and with high-frequency oscillations. The regular component
of the pressure Pr(0.25,¢) shown by the green line is much smaller than the singular component. During the
free-vibration stage, see Fig.2b, formula (P1) well predicts the pressure even for small number of retained
modes. Note that the pressure drops down to the vapour pressure at ¢ = 0.034 sec, when another model
including cavitation is required. Convergence of the regular component of the pressure Pr(0.25,t) with the
number of modes is shown in Fig.2c. Finally, Fig.2d compares the pressure by (P2)with the pressure for the
equivalent rigid wedge. The pressure for elastic wedge is smaller than for the rigid wedge except the end of
the impact stage.
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Fig.3. Total force evolution by (F1) and (F2).
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Fig.3a shows that the total force (red line) is well predicted by the formula (F1) except the very end
of the impact stage, when (F1) underpredicts the force. The force for the rigid wedge is higher than the
force for the elastic wedge except the end of the impact stage. Fig.3b shows that the normal mode method
accurately predicts the total force at the free-vibration stage even with 5 modes. Note that the force at this
stage is zero for the rigid wedge.
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Fig.4. Distributions of the pressure along the wetted region for different time instants.

The pressures calculated by (P2) during the impact stage (red lines) are compared with the corre-
sponding pressures for the rigid wedge (blue) and the singular component Pg(z,t) (black) in Fig.4. The
green line shows the pressure value at the centre of the wetted region. It is seen that the elastic pres-
sure is higher than the rigid pressure everywhere in the wetted region at the end of the impact stage.

The derived accurate approximation of the hydrody-

DA‘; namic pressure during the impact stage for an elastic
1t 1 structure can be used to calibrate CFD results and con-
trol the hydrodynamic loads when they are taking their
maximum values. Both the experimental measurements
and the numerical simulations show that extremely large
041 1 local pressures might occur during the impact. Due to the
extreme sensitivity of the maximum impact pressures to
the local details of the impact, the physical experiments

Fig.5. Dynamic Amplification Factor. show extreme variability and the numerical tools cannot
properly reach the convergence whatever the mesh size. These facts do not necessarily represent big practical
problem if the coupling with the structural response is properly taken into account. Indeed, the localized
extreme pressures are usually accompanied with extremely short durations and the affected area is very
small, so that the extreme pressure peaks are ultimately filtered by the structural dynamics. This means
that the full hydroelastic coupling is absolutely necessary for the evaluation of the structural response. If
applied directly on the structure in quasi static sense, these extreme pressures would induce severe structural
failure in many conditions. The well-known dependency of the structural response on the ratio between the
excitation time and the first structural natural period (Dynamic Amplification Factor — DAF) is shown in
Fig.5 where the three different regimes are identified (impulsive, dynamic and quasi static) and the example
case which is considered here is marked with bullet point.
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