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1. Introduction. The present study is concerned with dry and wet modes of an elastic struc-
ture in either full or partial contact with a liquid. The problem is two-dimensional, linear, without
any damping and external forcing. Initial conditions are not required in this problem. The liquid is
of infinite depth with horizontal equilibrium level. The shape of the structure, without vibrations
and without bending stresses in it, can be approximated as flat and close to the equilibrium level
of the liquid in the leading order. Such cases include, in particular, floating elastic plates of small
thickness and elastic wedges with small deadrise angles during the early stage of their impact onto
the water surface. The structural deflection is described by a one-dimensional equation of thin elas-
tic plate. The thickness of the plate and the elastic properties of the plate vary, in general, along
the plate. The plate is of finite length with certain edge conditions. There could be some extra
supports at internal points of the plate. The lower surface of the plate can be either completely
wetted or in a partial contact with the liquid.

The assumption of no damping implies that gravity, surface tension and viscous effects, as
well as the structural damping, are not included into the model. This assumption is justified for
structures with relatively high frequencies of its natural vibrations. The assumptions of small
thickness of the plate and linear response of the plate mean that both the plate thickness and the
plate deflection are much smaller than the plate length. As a result, the boundary conditions on
the liquid free surface and on the liquid/structure interface can be linearised and imposed on the
equilibrium liquid surface.

Figure 1. Floating elastic plate and notation.

The problem is coupled. The frequencies and the corresponding shapes of the structure vibra-
tions, which are known as the wet modes, should be determined together with the hydrodynamic
pressures caused by these vibrations. The wet modes are sought as superposition of dry modes of
the same structure. The dry modes and their dry natural frequencies are assumed known for a
given structure. This approach gives rise to a so-called added-mass matrix, which describes inter-
actions of the dry modes through the contact with the liquid. The dry modes are independent and
orthogonal if the structure is not in contact with the liquid.

We shall explain how to calculate the added-mass matrix for free-free floating elastic plate of
constant thickness, and how to calculate the wet modes and corresponding wet frequencies. It will
be explained how to apply the developed algorithm to (1) other edge conditions, (2) to plates in
partial contact with liquid, (3) to plates with internal supports and non-constant thickness, (4) to
several plates in full or partial contact with liquid, and (5) to plates with rigid parts of non-zero
length.
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2. Formulation of coupled problems for a floating plate. The deflection of a free-free
floating plate w(x, t) is described by the equations,

mwtt + (Dw′′)′′ = −ρϕt (−L < x < L), w′′ = w′′′ = 0 (x = ±L), (1)

∇2ϕ = 0 (y < 0), ϕ = 0 (y = 0, |x| > L), ϕy = wt (y = 0, |x| < L), (2)

where m is the mass of the plate per unit area, D is the rigidity coefficient, ρ is the liquid density.
A prime stands for x-derivative. The velocity potential ϕ(x, y, t) satisfies Laplace’s equation in the
flow region y < 0, linearised dynamic condition on the free surface, y = 0 |x| > L, the linearised
body condition in the wetted part of the plate, y = 0 |x| < L, and decays at infinity, ϕ → 0 as
x2 + y2 →∞. We shall determine periodic in time non-trivial solutions of coupled problem (1), (2)
in the form

w(x, t) = W (x) cos(ωt), ϕ(x, y, t) = Φ(x, y) sin(ωt), (3)

where W (x) and Φ(x, y) are real-valued functions to be determined together with the natural
frequency ω. The problem with respect to the shape of the plate natural vibration, W (x), and the
corresponding potential, Φ(x, y), is formulated in the dimensionless variables, which are denoted
with tilde,

x = Lx̃, W = WscW̃ , Φ = ωLWscΦ̃, Ω =
ρL5

D
ω2, α =

m

ρL
,

where Wsc is a formal scale of plate deflection. The tilde is dropped below. All variables and
parameters are dimensionless in the following analysis. Equations (1) and (2) provide

W iv = Ω
[
αW − Φ(x, 0)

]
(|x| < 1), W ′′ = W ′′′ = 0 (x = ±1), (4)

∇2Φ = 0 (y < 0), Φ = 0 (y = 0, |x| > 1), Φy = −W (y = 0, |x| < 1). (5)

For a plate with variable thickness and/or elasticity, m and D in (1) are functions of x and the
equation in (4) should be modified. For different edge supports, the edge conditions in (4) should
be changed. The presence of internal supports brings more conditions to (4), however, all these
modifications do not change significantly the formulation of the wet-mode problem. If the plate is
in partial contact with liquid, then the interval, where the body boundary condition (5) is imposed,
should be adjusted.

The problem (4), (5) and its meaningful modifications have discrete number of non-zero solu-
tions Wk(x) and the corresponding eigenvalues Ωk, where k ≥ 1, Ωk < Ωk+1 and the wet frequencies

of the wet modes are given by ωk = [ΩkD/(ρL
5)]

1
2 . The non-zero solutions of (1), where Φ(x, 0) = 0,

are known as the dry modes ψn(x) with eigenvalues λ4n = αΩn. The corresponding dry frequencies

are ω
(d)
n = λ2n[D/(mL4)]

1
2 .

3. Wet modes through the dry modes. The solutions of (1) are sought as superposition
of the dry modes,

W (x) =

∞∑
n=1

Wnψn(x), (6)

with coefficients Wn to be determined. Here ψn(x), n ≥ 1, are the solutions of the spectral problem,

ψ(iv)
n = λ4nψn (|x| < 1), ψ′′n = ψ′′′n = 0 (x = ±1), (7)

λn is a spectral parameter, n ≥ 1. These non-zero solutions are the dry modes of the plate. There
are two modes, ψ1(x) = 1/

√
2 and ψ2(x) =

√
3/2x with λ1 = λ2 = 0, for the free-free plate, which

correspond to rigid motions of the plate (rigid modes). Numbers of the elastic modes start from
n = 3. The modes are orthonormal, n ≥ 1,∫ 1

−1
ψn(x)ψm(x)dx = δnm. (8)
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Equations (5) and (6) provide the corresponding decomposition of the potential and the condition
on the plate for the new potentials φn(x, y),

Φ(x, y) = −
∞∑
n=1

Wnφn(x, y),
∂φn
∂y

= ψn(x) (|x| < 1, y = 0). (9)

Substituting (6), (9) in (4) and using (7) and (8) leads to infinite system of linear algebraic equations
for the vector ~W = (W1,W2,W3, ......)

T ,

D ~W = Ω(αI + S) ~W, Snm =

1∫
−1

φn(x, 0)ψm(x)dx, Dnm = 0 (n 6= m), Dnn = λ4n, (10)

where D is the diagonal matrix, I is the unit matrix, and S is the symmetric added-mass matrix.
The wet modes ωk are expressed through Ωk, which are real positive solutions of the equation
det[D −Ω(αI + S)] = 0. The vector ~Wk of the coefficients of the kth wet mode Wk(x) is obtained
as a solution of the truncated system (10) with excluded kth row and Wkk = 1. We do not normalise
the wet modes. The rigid dry and wet modes are equal, W1(x) = ψ1(x) and W2(x) = ψ2(x), with
Ω1 = Ω2 = 0. Difficulties with calculations of the wet modes are due to quick growth of the elements
of the matrix D as n → ∞, as well as with evaluation of the elements of the added-mass matrix
Snm which are given by double singular integrals. The integrals Snm are calculated analytically in
the next section.

If a plate is of non-constant thickness, supported in internal points with different edge condi-
tions, then one should modify the dry-plate equations (7) and (8) accordingly. If the plate is wetted
partly, then the limits in the elements of the added-mass matrix, see (10), should be adjusted.

4. Added-mass matrices for simple and complex structures. The elements of the
added-mass matrix Snm depend on the dry modes ψn(x) and the contact interval. The elements
can be presented as a bilinear operator Snm = U

[
ψm(x), ψn(x)

]
. Any solution of equation (7) with

any edge conditions and with a real λ4n > 0 has the form

ψn(x) = Ln1fn1(x) + Ln2fn2(x) + Ln3fn3(x) + Ln4fn4(x),

fn1(x) = cos(λnx), fn2(x) = sin(λnx), fn3(x) = e−λn(1+x), fn4 = e−λn(1−x),

where Lnj are coefficients specific for imposed edge conditions. Then, Snm = ~Lm ·S(nm)
e · ~Ln, where

~Ln = (Ln1, Ln2, Ln3, Ln4), and S
(nm)
e is a symmetric 4 × 4 matrix with the elements Se

(nm)
ij =

U
[
fmj(x), fnj(x)

]
, 1 ≤ i, j ≤ 4, n ≥ 3 and m ≥ 3. The elements Se

(nm)
ij are evaluated using the

formula

U
[
eax, ebx

]
=

{
π
a+b

[
I0(a)I1(b) + I1(a)I0(b)

]
(a 6= −b),

π
[
I20 (a)− I21 (a)− 1

aI0(a)I1(a)
]

(a = −b),
(11)

with any complex-valued a and b.
If the plate is wetted partly, only formula (11) should be modified. If a plate is of non-constant

thickness with transverse cracks and/or supported in internal points, then the dry modes should
be determined and approximated by a series of corresponding dry modes of a homogeneous plate
without cracks and internal supports, see Khabakhpasheva et al. (2013) for details of this approach.

5. Numerical results are shown for floating free-free elastic plate of constant thickness in
dimensionless variables. The only parameter of the problem, α, is small in the theory of thin plates.

The ratios of wet, ωn, and dry, ω
(d)
n , elastic natural frequencies are shown in the left Figure 2 for

different numbers n ≥ 3 and different α. The ratios increase with increase of α, always smaller
than one, and approach 1 for large n. Wet frequencies are also defined for α = 0, where the ratios
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tend to zero. Dimensionless wet frequencies for small α are shown in the right Figure 2.

Figure 2. The ratios of wet and dry frequencies (left) and the scaled ratios for small α (right).

The wet modes Wk(x) are obtained as superposition of the dry modes, see (6).

Wk(x) =
∞∑
n=1

Wknψn(x).

The coefficients Wkn in such series are shown in the tables below for α = 0.01. The left table is for
even modes and the right table is for odd modes. It is seen that the wet modes have approximately
the same shapes as the corresponding dry modes, but the natural frequencies of the modes are very
different, see Figure 2.

n\k 3 5 7 9 11 13
1 0.066 0.009 0.003 0.001 0.001 0.000
3 1.0 0.095 0.030 0.013 0.007 0.004
5 -0.098 1.0 0.141 0.060 0.032 0.019
7 -0.017 -0.153 1.0 0.015 0.073 0.042
9 -0.005 -0.042 -0.173 1.0 0.153 0.077
11 -0.002 -0.017 -0.057 -0.181 1.0 0.15
13 -0.001 -0.011 -0.026 -0.065 -0.183 1.0
15 -0.000 -0.008 -0.014 -0.033 -0.07 -0.182
17 -0.000 -0.005 -0.009 -0.019 -0.037 -0.072
19 -0.000 -0.003 -0.005 -0.012 -0.023 -0.039
21 -0.000 -0.002 -0.004 -0.008 -0.015 -0.025

n\k 4 6 8 10 12 14
2 -0.018 -0.003 -0.001 0.000 0.000 0.000
4 1.0 0.063 0.020 0.009 0.004 0.003
6 -0.065 1.0 0.079 0.032 0.016 0.009
8 -0.016 -0.083 1.0 0.082 0.036 0.020
10 -0.006 -0.027 -0.088 1.0 0.081 0.038
12 -0.003 -0.012 -0.032 -0.089 1.0 0.08
14 -0.001 -0.006 -0.016 -0.035 -0.089 1.0
16 -0.001 -0.003 -0.009 -0.019 -0.037 -0.087
18 -0.000 -0.002 -0.006 -0.011 -0.021 -0.037
20 -0.000 -0.001 -0.004 -0.007 -0.013 -0.021
22 -0.000 -0.001 -0.002 -0.005 -0.009 -0.014

Added-mass matrices for some particular symmetric edge conditions and homogeneous plates
were calculated in the past, see Korobkin and Khabakhpasheva (1999). The present method is
general. It is applicable to any complex structures in contact with liquid with minor exceptions,
see Khabakhpasheva (2006).
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