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1 INTRODUCTION

Recently larger and faster ships are being built, so that ships become more flexible and due to forward speed
the frequency of encounter in waves approaches the natural frequency of elastic ship motions. Therefore it is
necessary to compute wave-induced hydroelastic responses ithesu accuracy.

Because the Euler-beam model tends to slightly overestimate the natural frequencies of elastic motions and
this problem is prominent for higher elastic modes, the present study adopts the Timoshenko-beam approxima-
tion which takes into account the deformation due to shearing force. In the structural analysis, it is common to
define a special set of natural mode shapes; that is, the dry or wet eigen-modes. Normally FEM may be used
for providing mode shapes by taking account of the actual ship geometry, the distribution of flexural rigidity,
and the edge boundary conditions. It was noted, however, by Newman (1994) that the structural deflection can
be represented instead by a superposition of non-physical mathematical orthogonal functions that are simpler
but can predict the physical motions of a body with appropriate boundary conditions satisfied.

Following the idea of Newman, we consider Legendre and Chebyshev polynomials of first kind and second
kind as the mode functions for the structural deflection in addition to the dry eigen-modes of the Timoshenko
beam. It is shown that a superposition of mathematical polynomial functions can satisfy the required boundary
conditions in the process of partial integration for théistiss matrix and computed results are in good agree-
ment with the results obtained using the dry eigen-modes of a uniform beam, although the rate of convergence
is slightly slow with increase in the number of elastic modes when using Chebyshev polynomials.

2 PROBLEM FORMULATION

We consider a ship advancing at constant forward spéedhile oscillating with circular frequency of en-
counterwe in a regular wave with amplitudg, wavenumbekg, and circular frequencyg = \/g_ko The water
depth is assumed deep and the incident angle of wave relative to the pasitie is denoted ag, hence
we = wo — KU cosy. The origin of the coordinate system is placed on the undisturbed free surface and the
midst of ship, with positivez-axis taken vertically upward. The ship is considered elastic and thus the ship
motion includes not only rigid mode$ € 1 ~ 6) but also elastic mode$ € 7 ~ N).

The hydrodynamic part of the problem is analyzed with potential-flow assumption, using the velocity
potential which is written as
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wherex = (XY, 2) and the steady flow is represented by the double-body flow potehtiadnd additional

wavy-flow part is assumed negligible. The spatial part of the unsteady velocity poigjalonsists of the

components of incident wavs, scattered waves and radiation wave; (j = 1 ~ N) where | denotes the

mode of body motion ani; its complex amplitude.

The unsteady velocity potentia (j = 1 ~ N andS) is sought to satisfy the Laplace equation and
appropriate boundary conditions on the free surface, the ship-hull surface, and the radiation surface located at
a distance from the ship. The free-surface boundary condition to be satisfied @nincludes contributions
from @p, which is basically the same as that in Sclavounos & Nakos (1990) and hence not written here. The
ship-hull boundary condition can be written as
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These are extension af andm; for the rigid-body motions to the general modes including elastic deflection.
The mode vector for th¢th elastic motion is denoted &g = (h!, h‘z, h’S). For the case of vertical bending, the
components oh! are expressed with the vertical displacemey(x) as follows:
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wherezy is the vertical position of the neutral axi¥y in (3) denotes th&-th component of the steady-flow
velocity vectorV = V@p. The summation signs with respectkand ¢ are deleted in (3) with Einstein’s
summation convention.

If the mode function in thg-th modew;(x) is specified, a solution of the velocity potentig(x) will be
obtained by means of the Rankine Panel Method (RPM) in the frequency domain. Once the velocity potential
has been determined, the pressure and resulting hydrodynamic forces in the radiatidtracttbdi problems
can be computed, the results of which will be substituted into the motion equations to determine the complex
amplitudeX; of the j-th mode of motion.

3 MOTION EQUATION

In the present study, the deflection of a ship is approximated with the Timoshenko-beam model which includes
the distortion by the shearing force in addition to the bending moment. Separating the time depettdfence
the spatial part of vertical deflection, denotedng), is governed by the following equation:
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andm s the mass per unit lengtlE|l the flexural rigidity € is Young’s modulus andl the moment of inertia
of cross section)GA the shear rigidity G is the shear modulus arithe cross-section ared; a constant
dependent on the cross-section geometry. Tius (6) is the ratio between the flexural and shear rigidities
which has the dimension of length squaré¢k) in (5) denotes the distribution of local pressure force due to an
external force on a transverse cross-section of the ship, and the secorf®(gjmefined in (6) is functionally
treated as the shearing force.

Since both ends of the ship are free, the boundary conditions for the deflection must be given such that the
bending moment and shearing force are equal to zero at both ends of the ship, which are written as
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The spatial part of vertical deflection(x) may be expanded in an appropriate set of modes as follows:
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where the complex amplitud§ of each mode is unknown but the same as that in (1), implying that the velocity
potentialg; is determined by specifying the mode functiey(x) in (8).

With the method of weighted residuals, (5) is multiplieduyx) and integrated along the ship’s length.
The result can be written in the following matrix form:
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andq = x/(L/2) is the normalized coordinate. The right-hand side of (9) includes ffraction, radiation, and
restoring forces due to the pressure fof¢g) (which is denoted ak;) and the shearing forcg>(x) (which is
denoted a§>).



The stitness matrixD;j given by (11), is transformed using the partial integration. This transformation is
correct if each mode function satisfies the free-end boundary conditions (7), like the dry eigen-mode functions
to be explained later. If mathematical orthogonal functions like Legendre or Chebyshev polynomials are used in
place of the dry eigen-modes of Timoshenko beam, we must enforce the free-end boundary conditions to be sat-
isfied by the sum of mode functions used. This is possible as shown by Newman (1994) and Kashiwagi (1998),
in terms of the sfthess matrix represented by the most right-hand side of (11).

4 MODE FUNCTIONS

As the first choice for the mode functions, the dry eigen-modes of a uniform Timoshenko beam are considered,
which are homogeneous solutions of (5) and thus written as
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wherex, denotes tha-th eigen-value associated with the dry-mode frequency
Analytical solutions satisfying (12) and the free-end boundary conditions are given as follows:
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wheren = 2,3,---; n = 2{ is an even number and= 2¢ + 1 is an odd number fof = 1,2, - - - ; an andB, are

given by (14) and thus satisty,8, = 1; k,, denotes the solutions of the eigen-value equation given by
antanknan) + Bntani(knBn) =0 for n=2¢ (15)
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We note thak, = 0 is also a solution of (15) which may be denoted@s 0 andk; = 0 corresponding
to the case of = 0 in (15), and these values provide the mode functions of heave and pitch as the rigid-body
motions. We also note that the dry eigen-modes of the Timoshenko beam given by (13)—(15) are not orthogonal
because of the existence of shearing force. However, for the cage=00, we can confirm that, = 8, = 1
and thus these solutions become the dry eigen-modes of the Euler beam, which are orthogonal.

In this paper, mathematical orthogonal polynomials are also considered as the mode functions for elastic
deflection. One of them is the Legendre polynomials, which can be expressed with Rodrigues’ formula in the
form
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whereq = x/(L/2) and hence defined over the intervdl < g < 1. These functions are orthogonal and its
result can be expressed as

Wn+5(x) = Pl’l(q) = (q2 - 1)n’ n= 2’ 3’ e (16)

! 2
| Prl@Pr(ed = 57 o a7

As another orthogonal polynomials, the Chebyshev polynomials are considered, which include the first
kind denoted a%,(q), and the second kind denotedlagq). These are expressed as follows:
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whereq = cosd andn = 2,3,---. It should be noted that the second kidd(q) is modified from the original

definition by dividing withn + 1 so thatU,(1) = 1. The Chebyshev polynomials are also orthogonal in terms
of weight function and its result can be expressed as
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However, these orthogonal relations of Chebyshev polynomials cannot be applied to computation of the mass
matrix defined by (10) and also thefitiess matrix defined by (11) owing to weight functions shown in (19).
Therefore it is worth noting that there is coupling in the mass matrix for all even or odd modes, including the
coupling of rigid modes with symmetric or antisymmetric polynomials for elastic modes.



5 RESULTS AND DISCUSSION

5.1 Comparison with experiments at zero speed

As the first validation example, computed results are compared with the experiment conducted by Mélenica
al. (2003), measuring the vertical deflection of an elastic barge model which is composed of 12 small floaters.
They are connected by two long plates on the top of the barge that have a low flexural rigidity.

Although the results are not shown here owing to paucity of space, obtained results are in good agree-
ment with experimental data, and noticeablatence cannot be seen between the results using the Legendre
polynomials and the dry eigen-modes. Through comparison of the results between Euleybea®) @nd
Timoshenko beam, thefect of shearing force is confirmed to be negligible in the present case.
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Fig.1 Nondimensional amplitude of the vertical deflection at the lspw {), summation of rigid and elastic
modes of motions, computed &b = 0.2 for the modified Wigley model andL = w?L/g.

5.2 Convergence study at forward speed

As the next validation, convergence in computed results with increasing the number of modes is studied for
the forward-speed cas&if = 0.2) using the RPM and a modified Wigley model adopted in Kashiveagi
al. (2015). To see the convergence in the total deflection of the model particularly at thg boly,(we define
the following value, nondimensionalized with incident-wave amplitfide
6+]
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The value|X+0| means only the rigid motion (heave and pitch), and subsg¢iiptreasing, more elastic modes
are added to present the total vertical deflection at the lgowX).

For rigid motions shown in Fig. 1(a), the results using the Legendre polynomials and the dry eigen-modes
of Timoshenko beam are in virtually perfect agreement, since the couplirtijctets in the matrix between
rigid and elastic modes are basically all zero in both methods. On the other hand, when using the Chebyshev
polynomials of first kind and second kind, we can see a clgéerdnce from the other results in a range of
higher frequency because of relatively large values in the coupling matrikaerts. This is because the
Chebyshev polynomials are simply used as the mode functions in computing (10)—(11) without the weight
functions unlike in (19). Fig. 1(b) includes the first elastic bending m¥gen which a noticeable dierence
exists, implying that the convergence is not achieved yet. In fact, in Fig. 1(c) adding up to three elastic modes,
no visible diference exists in the results between Legendre polynomials and dry eigen-modes. However, we
can see still slight discrepancy when using the Chebyshev polynomials, which may be reduced to practically
zero with increasing more the number of modes.
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