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1 Introduction
An extension from 2D to 3D of the fully-nonlinear numerical wave tank (NWT) used by Hanssen et al. [1] is

presented. Potential-flow theory is assumed, and the high-order harmonic polynomial cell (HPC) field method
proposed by Shao and Faltinsen [2] is used to solve the governing Laplace equation for the velocity potential ϕ
numerically. The present work deals with an immersed boundary method without and with the use of an octree
technique for local grid refinement near the air-water interface, and examines only wave propagation; dealing with
wave-body interactions is planned as a future development. Figure 1 (a) illustrates the physical domain bounded
by a free surface SFS , vertical tank sides STS and a flat seabed SSB where the hydrodynamic boundary-value
problem (BVP) for ϕ is solved. SFS is modelled as an immersed boundary in a stationary Cartesian grid with
overlapping cells. As shown in Figure 1 (b), the cells consist of 26 boundary nodes and are characterized by the
node spacing (∆x,∆y,∆z). Each cell has a local oxyz coordinate system with origin in the interior node. For an
arbitrary point, the relationship between the global and local coordinate systems is x = x − x27, where x27 are
the global coordinates of the interior cell node. Everywhere inside a cell the velocity potential is represented as

ϕ(x) =

26∑
i=1

bi(x)ϕi; x ∈ {|x| ≤ ∆x ∧ |y| ≤ ∆y ∧ |z| ≤ ∆z}, (1)

where ϕi, i = 1, ..., 26 are the values of the velocity potential in the boundary nodes and bi, i = 1, ..., 26 are
smoothly-varying coefficients involving the same set of harmonic polynomials as used by Shao and Faltinsen [2].
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Figure 1: Definition of hydrodynamic BVP in a global Oxyz coordinate system (a) and a cubic cell with a local
oxyz coordinate system (b).

SSF is described by semi-Lagrangian markers with horizontal coordinates coinciding with the grid nodes and
that only move vertically. It is noted, however, that the method can be modified to allow for fully-Lagrangian
markers. The global matrix of the algebraic equation system for ϕ is obtained using equation (1) to enforce
Dirichlet conditions on SSF , the spatial derivative of the same equation to enforce Neumann conditions on STS
and SSB , and a continuity equation for interior nodes below SSF obtained by using equation (1) to express ϕ
in x = 0 for all cells. When we introduce octree grids to locally refine the solution close to SSF , some of the
continuity equations are modified to implicitly couple the numerical solution in different octree-grid levels.

The rest of the paper is organized as follows: First, the local solution properties in an arbitrary cell are
investigated to give guidance on proper modelling strategies. Thereafter, the accuracy and efficiency of the
solution for a realistic global BVP are looked into. Finally, conclusions are drawn and future work outlined.

2 Local Solution Properties in a Cell
Investigating the fundamental properties of the HPC method in 2D, Ma et al. [3] found that in order to maximize

the accuracy of the numerical solution, undistorted, square cells should be used. The accuracy of the numerical



solution in each cell directly influences the accuracy of the global BVP, and the numerical stability in a time-
domain simulation. To examine if the findings are valid also in 3D, a similar study as in [3] is therefore performed.
Analytical Dirichlet conditions are enforced in all 26 boundary nodes of a cell, and the absolute error of the
numerical solution is computed in the position of the interior node (node 27 in Figure 1 (b)). As analytical solution
we use the wave-like expression ϕana(x) = [ωζA cosh k(z + h) sin θ]/[k sinh kh] with θ = kx cosβ+ky sinβ+α and
ω =
√
gk. The following parameters are applied: ζA = 1.0 m, k = π/6 m−1, h = π/k, g = 9.81 m/s2, β = π/4 and

α = −π/5. The cell’s aspect ratio, describing its stretching, is defined as ∆x/∆z, and the skewness, describing its
distortion, is defined as cot γy = 1/ tan γy. γy is the angle the straight line through nodes 5-27-22 is rotated about
the y-axis. Figure 2 shows examples of a few stretched or distorted cells. The error of the numerical solution
is defined as εχ(x) = |χnum(x) − χana(x)|/max |χana|, where max |χana| is the maximum absolute value of the
analytical solution anywhere inside the cell and χ is either ϕ or any of the three components of ∇ϕ. Figure 3
shows that the effect of stretching an undistorted cell, or skewing a cell with unit aspect ratio, is similar in 2D
and 3D. Although the shapes and absolute values of the error curves depend on the enforced numerical solution,
which naturally differ in 2D and 3D, the results are qualitatively consistent. Hence, where square, undistorted
cells are required to maximize the numerical accuracy in 2D, it is equally important to use cubic, undistorted cells
in 3D. This can only be achieved in Cartesian grids, which require that complex surfaces are modelled as immersed
boundaries.
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Figure 2: Examples of stretched and distorted cells. Black dashed lines indicate a cubic, undistorted cell.
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Figure 3: Absolute error in the interior cell node as a function of the cell’s aspect ratio and skewness.

With SSF modelled as an immersed boundary, the associated free-surface Dirichlet conditions are enforced
in cells intersected by SSF in the upper half-plane. We here examine if the numerical accuracy is influence by
where SSF intersects the cell by varying ζ(x̃27) − z27 between 0 and ∆z. The analytical Dirichlet conditions
previously enforced in nodes 18− 26 are replaced with Dirichlet conditions in the position of free-surface markers
with the same horizontal coordinates x̃ and vertical coordinates given by the analytical wave elevation ζana(x̃, t) =
ζA cos θ, where θ = kx cosβ + ky sinβ − ωt. The Dirichlet conditions are given by the corresponding analytical
velocity potential ϕana(x, t) = [ωζA cosh k(z + h) sin θ]/[k sinh kh]. The following parameters, realistic for a typical
numerical simulation, are used: ζA = 0.2∆z, λ = 25∆x, β = π/4 and h = 0.5λ. It is noted that, although the
analytical solution here corresponds to a linear solution, we enforce ϕana in the exact position of SSF that may be
above the still waterline. Figure 4 shows examples of cells intersected by SSF at three different vertical positions
and corresponding errors of ∂ϕ/∂z on SSF . It is generally observed that the distributions of errors, both on and
below SSF , vary little with the vertical position of SSF relative to z27. The errors of ∇ϕ on SSF are always
moderate in the cell’s interior free-surface marker compared to in the eight boundary markers. Hence, when
estimating ∇ϕ for a marker as the spatial derivative of equation (1), it is recommended to use the cell where this
is the interior marker whenever possible.



x (m)

1.0
0.5

0.0
0.5

1.0
y (m

)

1.0
0.5

0.0
0.5

1.0

z
(m

)

1.0

0.5

0.0

0.5

1.0

0.0e+00

1.0e-03

2.0e-03

3.0e-03

4.0e-03

5.0e-03

6.0e-03

7.0e-03

(a) Low filling

x (m)

1.0
0.5

0.0
0.5

1.0
y (m

)

1.0
0.5

0.0
0.5

1.0

z
(m

)

1.0

0.5

0.0

0.5

1.0

0.0e+00

2.0e-03

4.0e-03

6.0e-03

8.0e-03

1.0e-02

1.2e-02

1.4e-02

(b) Intermediate filling

x (m)

1.0
0.5

0.0
0.5

1.0
y (m

)

1.0
0.5

0.0
0.5

1.0

z
(m

)

1.0

0.5

0.0

0.5

1.0

0.0e+00

5.0e-03

1.0e-02

1.5e-02

2.0e-02

2.5e-02

(c) Large filling

Figure 4: Cells intersected by SSF in different vertical positions at t = 0. The colour bars indicate numerical
errors of ∂ϕ/∂z on SSF . Red circles indicate free-surface markers.

3 Global Accuracy with Local Grid Refinement
Promising results using the HPC method to model a large-domain NWT in 3D were presented by Liang et al.

[4], however, involving a large number of cells. Here, we introduce an octree-grid strategy to reduce the number
of cells, which ultimately is required to achieve a method that is practical without the use of supercomputers. As
a case study we use a third-order spectral solution for an irregular, long-crested sea state with significant wave
height Hs = 8 m and peak period Tp = 10 s as reference solution to enforce boundary conditions in a NWT
similar to that in Figure 1. The NWT is 500 m long and 100 m wide and with h = 100 m. 2D projections of
four uniform grids with different levels of local octree refinement close to the free surface are shown in Figure 5
together with resulting errors in ϕ and ∂ϕ/∂z. Nlevels = 1 corresponds to no refinement, whereas Nlevels = 4
means that the grid is refined locally three times. All the grids have ∆x ≈ λp/7.5 in the coarsest refinement
level, while Nlevels = 4 gives a refinement ∆x ≈ λp/60 near SSF where λp is the wavelength corresponding to Tp.
Increasing Nlevels, the numerical solution clearly becomes more accurate in the proximity of SSF , while towards
SSB the errors are similar in all grids. The reason for not seeing zero errors on SSF is that these are computed in
points that generally do not coincide with free-surface markers (where Dirichlet conditions for ϕ are enforced).

In Figure 6 the L2 errors of ϕ, ∂ϕ/∂x and ∂ϕ/∂z computed over 12500 points on SSF are plotted as a function
of the CPU time used to solve the global BVP in Python on a standard laptop with an iterative BiCGStab solver
with spilu preconditioner. For the smallest errors i.e. the most refined grids, the CPU time can be reduced with up
to 100 times using the local refinement compared to a grid with Nlevels = 1. Although involving some additional
effort to construct the global coefficient matrix, the results indicate that the local grid-refinement technique can
improve the computational efficiency substantially.

4 Conclusions
Examining the local properties of the 3D HPC method, it is recommended to use Cartesian grids with undis-

torted, cubic cells to maximize the accuracy of the numerical solution. This confirms the 2D findings made by
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Figure 5: log10(εϕ) and log10(ε∂ϕ/∂z) for different Nlevels.
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Figure 5: log10(εϕ) and log10(ε∂ϕ/∂z) for different Nlevels (cont.).
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Figure 6: L2 errors on the free surface plotted as a function of the CPU time used to solve the global BVP.

Ma et al. [3]. Furthermore, it is found that when modelling SSF as an immersed boundary, the accuracy of the
solution is somewhat insensitive to the vertical position where SSF intersects the cell. As a general rule for an ar-
bitrary free-surface marker, it is recommended to estimate ∇ϕ using a cell where the marker has local coordinates
x = y = 0.

It was shown that solving the global hydrodynamic BVP in a NWT using an octree-grid technique to refine the
grid locally near SSF can lead to substantial improvements in the computational efficiency. An ambition of the
present work is to utilize such improvements so that practical problems in marine hydrodynamics can be studied in
a fully nonlinear framework without using supercomputers. Currently, the octree technique is being implemented
in a time-domain solver where the grid is refined adaptively. We intend to present results from this work during
the workshop.
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