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INTRODUCTION

The statistics of ocean wave groups is a problem of long interest to oceanographers and marine
engineers (the latter due to its relevance to, say, ship motion statistics). The critical wave group
(CWG) method [1, 3] has been developed as an advanced approach to evaluate the extreme ship
motion probability induced by an ensemble of wave groups. The centralized idea in the CWG method
is that the wave-group probability (or probability that a wave group exceeds a threshold) is established
assuming the Markov chain property of adjacent wave heights. The CWG method constructs wave
groups based on statistics that can be derived from either linear or nonlinear waves, and it has been
mostly studied using statistics derived from linear wave fields. The effect of wave nonlinearity on
both the wave group and ship motion statistics has not been studied in detail. In this work, we
specifically study the effect of wave nonlinearity on wave group statistics in nonlinear wave fields
generated by the high-order spectral (HOS) method [2, 4]. Extreme ship motion is then evaluated
through a nonlinear roll equation using the CWG method. We show that, for a narrow-band wave
field with large steepness, the extreme motion (and the wave group) probability can be significantly
influenced by the wave nonlinearity.

METHODOLOGY

We sample both linear and nonlinear wave fields described by the same JONSWAP spectrum to
determine the conditional probabilities of wave height and period of successive waves, as well as the
associated extreme ship motion statistics.

HOS While the linear wave field can be generated by assigning random phases to each wave mode,
the nonlinear wave field is generated through the HOS computations starting from linear wave fields.
Specifically, HOS solves the nonlinear wave equations:
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where x, z and t are the horizontal and vertical coordinates, and time, η(x, t) is the surface elevation,
ψ(x, t) the surface potential, φz(x, t) the surface vertical velocity with φ(x, z, t) the velocity potential
of the flow field. As studied in [5], the nonlinear wave effect is manifested (in terms of its influence to
wave statistics) in 40-60Tp, with Tp the peak period of the spectrum. We therefore take an ensemble
of time series (from different spatial locations and ensemble of runs) in 40-60Tp, based on which we
evaluate the wave group statistics in nonlinear wave fields. We assume that the spectral evolution in
40-60Tp only has secondary effect in modifying the group statistics.

Critical Wave Group Method To compute the probability of extreme ship motion, the CWG
method expresses the probability of a response φ exceeding a threshold φcrit as the probability of all



wave groups and initial condition (i.e., the state of the ship at the moment of encounter,) combinations
that lead to an exceedance. A critical wave group, defined as a group of waves that leads the ship to

an infinitesimal exceedance of a response threshold, is mathematically described by a vector h
(k)
cr that

contains the heights of j waves and their corresponding periods Tj .
The CWG method determines the probability of threshold exceedance as
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is the probability of observing a wave group that is larger than the critical wave

group, with indices m, j and k denoting the wave period, number of waves and initial conditions.
p [ick] is the probability of the initial condition ick. The key computation involved in (3) is the term
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This probability is determined by evaluating the joint probability of the wave heights Hj exceeding

the heights of the critical wave group h
(k)
cr , and the wave period Tj being within the range Tcr,m. In

this work, the joint probability of successive wave heights and periods is determined from the Markov
chain probability (of adjacent two waves), extracted from wave fields generated by linear theory and
nonlinear HOS computations. This Markov chain approach allows each individual wave group to be
uniquely described by Hc, Tc (which are the height and period of the largest wave), and j.

The probability of initial conditions p [ick] is obtained by simulation of ship motion in random
irregular waves and developing a probabilistic distribution of the quantities of interest. The initial
condition distribution can then be discretized into k initial states for the identification of critical wave
groups and computation of the exceedance probability.

Roll Model Since our focus is on the nonlinear wave effect, we use a simplified model to compute
the ship roll motion in a given wave group, namely a phenomenological nonlinear roll equation [1]:

φ̈+ α1φ̇+ α2φ̇|φ̇|+ β1φ+ β2φ
3 = εη(t), (5)

where η(t) is the time series of wave elevation, and the solution φ(t) represents the resulting roll motion
of the ship. We use empirical parameters α1 = 0.095, α2 = 0.052, β1 = 0.1175, β2 = −0.09, ε = 0.009.
The wave elevation η(t) is determined from the critical wave group parameters using a Fourier basis.

RESULTS

We apply the CWG method on the system described in Eqn. 5 that is operating in a JONSWAP
spectrum with significant wave height Hs = 7.5 m, peak wave period Tp = 12 s and peak enhancement
factor γ = 9. We sample from linear wave fields and HOS simulations of order three to compute wave
group statistics.

We first test the probabilistic relation between successive waves for both linear and nonlinear
waves. Treating wave successions as a Markov chain, the most likely following height and period
can be found by utilizing their conditional probability given current wave’s height. Fig. 1 shows the
expected (most likely) following wave height Hn, given the present wave height Hn−1, for waves of
period 12 and 13 s. For both periods, wave heights of less than 10 m show that the HOS and linear
wave theories predict similar behavior, whereas for waves greater than 10 m, the most likely following
wave height is over-predicted by the linear theory.
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Figure 1: Markov chain predictions of the expected following wave height given the present wave
height (Hn−1) and period (Tn−1).

Ultimately, the probability of exceedance depends on the probability of a wave group being larger
than the critical wave group. Fig. 2 shows a comparison for HOS and linear waves of the probability
of wave group exceedance described in Eqn. 4 for a single wave (j = 1) and two successive waves
described by the Markov chain prediction (j = 2).
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Figure 2: Comparison of the probability of wave group exceedance for linear and nonlinear wave fields.

For j = 1, the contours of Fig. 2(a) represent the probability of any single wave with a given
period Tc exceeding the height Hc. The probability contours demonstrate that encountering larger
single waves is more probable using the HOS statistics. For j = 2, the contours in Fig. 2(b) represent
the probability that any two successive waves, where the period of the largest wave is Tc, exceeds a
two-wave group with the largest wave Hc and the successive wave determined by the Markov chain
prediction. The HOS contours trend towards higher probability for lower period wave groups while
the linear statistics trend towards higher probabilities for larger wave periods. This dependence on
period is consistent with Fig. 1, where the Markov chain predictions of following wave height show
larger differences for Tc = 13 than Tc = 12.

Fig. 3 shows a comparison of the nonlinear and linear cases for an example wave group, as well as
the probability of exceedance at various roll thresholds. Fig. 3(a) demonstrates that for a j = 2 wave
group with the same largest wave, and initial conditions, the resulting roll response is different. This
difference is directly linked to the phenomena shown in Fig. 1 and is purely from the construction of
the wave groups. Fig. 3(a) highlights that the different prediction of the most likely following wave
from the nonlinear and linear wave statistics results in a different maximum roll response.
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Figure 3: Comparison of a sample roll time history for a similar j = 2 wave group and of probability
of exceedance utilizing statistics from linear and nonlinear wave fields.

The over-prediction of the following wave height in Fig. 1 also leads to an over-prediction of the
roll response and thus, an over-prediction in the probability of exceedance shown in Fig. 3(b). Another
contribution to over-prediction of the probability of exceedance for the linear wave field is that the
probability of wave group exceedance for j = 2 in Fig. 2 is higher for larger periods in the linear
case. Additionally, Eqn. 5 has an estimated natural period of 18.3 s. Thus, the over-prediction of
probability of exceedance for the given case study can be attributed to a combination of the over-
prediction of the following wave in the Markov chain predictions that becomes more evident as the
wave period increases, the trending towards larger periods in the probability of wave group exceedance
for linear wave fields, and the natural period of roll residing in a region where the probability of wave
group exceedance is larger with the linear wave statistics. This study indicates that the differences
between the resulting probability of exceedance for nonlinear and linear wave fields may not always
be consistent with being either an over-prediction or an under-prediction. The natural period of the
response will also play a role in the trends.

The preliminary results show that the conditional probability of successive waves as determined
from linear or nonlinear waves is different. Also, the difference is notable for the extreme motion
probability. If the abstract is accepted, the authors will study and present results for the extreme roll
motion of a ship section using Computational Fluid Dynamics (CFD). The ship section will be from
the midship section of the ONR Tumblehome hull form.
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