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The new analysis further to the presentation of the ship-motion Green’s function with viscous effect in [1]
reveals several interesting features including the heavy damping to short waves, the removal of singularities
in the vicinity of the source track and that across the critical frequency, and the smoothness of integrand
functions. In particular, the effect of viscous coefficient on the integration of Green’s function is studied.

1 Ship-motion Green’s function with viscous effect

Within the classical reference system moving at the same speed U as the ship of length L, and using the
basic parameters (F, f, τ) = (U/

√
gL, ω

√

L/g,Uω/g) associated with ω the encounter frequency and g the
acceleration due to gravity, the fundamental solution to time-harmonic ship-motion problems is written as

4πG(x, ξ) = −1/r + 1/r′ +GF (x, ξ) (1)

in which r is the distance from the field point x(x, y, z) to the source point ξ(ξ, η, ζ) and r′ is that to the
mirror soure point ξ′(ξ, η,−ζ). The free-surface term GF (x, ξ) is given by the Fourier representation

F 2GF (x, ξ) =
1

π

∫ π

−π

dθ

∫ ∞

0

k

D(k, θ)
ekZ dk (2)

with the speed-scaled Fourier variable k and

Z = v − iw , v = (z + ζ)/F 2 and w = (x− ξ) cos θ/F 2 + (y − η) sin θ/F 2 (3)

The denominator D(k, θ) of the integrand function in (2) is the dispersion function associated with the
boundary condition on the free surface (eq.16) in [2] derived from the analysis based on the linearized
Navier-Stokes equation and Helmoholtz decomposition and written by

D(k, θ) = (k cos θ − τ)2 − k − i4ǫ(k cos θ − τ)k2 (4)

The speed-scaled coefficient ǫ in (4) is defined by

ǫ = ν/
(

F 3
√

gL3
)

= νg/U3 (5)

in which ν denotes the fluid kinematic viscosity. The coefficient ǫ may take approximate values

U(m/s) =

ǫ ≈
0.01

10

0.1

0.01

1

10−5

10

10−8
(6)

according to (5). Since O(U) ≈ O(1) in most applications of ship motions, the values of ǫ ≈ 10−5 or in a
range of ǫ ≈ 10−3 ∼ 10−6 can be taken. One of important objectives of the present work is to study the
effect of viscous coefficient to the Green’s function and its integration on flat panels.

2 Complex wavenumbers

The complex dispersion equation by putting (4) equal to zero

D(k, θ) = 0 = −i4ǫ cos θ(k − k1)(k − k2)(k − k3) (7)



has three complex roots
k1,2,3(θ) = κ1,2,3(θ) + iµ1,2,3(θ) (8)

with κ1,2,3 and µ1,2,3 being the real and imaginary parts, respectively, varying with the polar angle θ.

Let’s start with the special case of F 6= 0 but f = 0 (steady flow τ = 0) for which we have

ks1 = 0 , ks2 = κs2 + iµs
2 =

2

cos2 θ +
√
cos4 θ − i16ǫ cos θ

, ks3 = κs3 + iµs
3 =

cos2 θ +
√
cos4 θ − i16ǫ cos θ

i8ǫ cos θ
(9)

given by (eq.2.12) in [3]. At the limit of ǫ → 0+, the wavenumber ks2 = 1/ cos2 θ covers the case of
Neumann-Kevin steady flow. The third wavenumber |ks3| → ∞ so that its contribution is nil.

For a finite value of ǫ 6= 0, the real part κs3 is negative and imaginary |µs
3| ≈ O(1/ǫ). The real

κs2 ≈ 1/ cos2 θ is close to the wavenumber of steady flow for | cos θ| > 3
√
16ǫ, but very different for 3

√
16ǫ >

| cos θ| → 0. For the sake of presentation, we like to define at τ = 0

k01 = ks0/τ
2 = 1 + i4ǫf , k02 =

{

ks2 cos θ for θ ≥ π/2

ks3 cos θ for θ < π/2
, k03 =

{

ks3 cos θ for θ ≥ π/2

ks2 cos θ for θ < π/2
(10)

with ǫf = νf3/
√

gL3 in k01 applying for f 6= 0 (zero-speed τ = 0), and (k02 , k
0
3) for F 6= 0 (steady flow

τ = 0), and in general case of τ > 0

kτ1 = k1/τ
2 , kτ2,3 = κτ2,3 + iµτ

2,3 = k2,3 cos θ = κ2,3 cos θ + iµ2,3 cos θ (11)

The cubic dispersion equation (7) can be solved by applying the Cardano’s formulae to obtain three complex
roots (8). The wavenumbers (kτ1 , k

τ
2 , k

τ
3 ) scaled by (11) are illustrated on the left, in the middle, and on

the right of Figure 1, respectively. The real and imaginary parts are depicted against the value cos θ for
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Figure 1: Wavenumber curves (kτ
1
, kτ

2
, kτ

3
) are illustrated against cos θ, on the left, in the middle and on the right.

θ ∈ (0, π), by the solid and dashed lines, respectively. With one value of ǫ = 10−4, three values of τ = 0, 0.2
and 0.5 are used and associated wavenumber curves are painted in black, blue and red colors, respectively.

The wavenumber kτ1 is of finite magnitude. Its real part κτ1 is very close to that of inviscid case and
its imaginary part µτ

1 ≈ ǫ for τ ≤ 1/4. For τ > 1/4, µτ
1 ≈

√

−1/4− τ cos θ/(τ2 cos2 θ) for θ ≥ π − θc with
θc = arctan

√
16τ2 − 1, but smoothly crossing θ = θc as shown by the zoomed view. The wavenumbers

kτ2 and kτ3 vary smoothly crossing θ = π/2. Indeed, kτ2 ≈ O(cos2 θ) and kτ3 ≈ τ + O(cos2 θ) for τ > 0.
Particularly at τ = 0, κ02 = −κ03 = −

√

| cos θ|/(8ǫ). The wavenumber k2 = kτ2/ cos θ > 0 for θ > π/2 and
k3 = kτ3/ cos θ > 0 for θ < π/2 are associated with wave components. On the other side, The wavenumber
κ2 = κτ2/ cos θ < 0 for θ < π/2 and κ3 = κτ3/ cos θ < 0 for θ > π/2 are associated with evanescent local
components, largely damped by the fact that |µ2| ≈ O(1/ǫ) for θ < π/2 and |µ3| ≈ O(1/ǫ) for θ > π/2. On
the other side, the imaginary wavenumber µ2 = µτ

2/ cos θ ≈ −µ1 for θ > θc and smoothly crosses θ = θc.

3 Integration of Green’s function over panels

Introducing (7) into (2) and using the fraction decomposition of k/D(k, θ), we have

F 2GF (x, ξ) =
1

π

∫ π

−π

[A1(θ)K(x, ξ, k1) +A2(θ)K(x, ξ, k2) +A3(θ)K(x, ξ, k3)] dθ (12)



with the complex amplitude functions An(θ) for n = 1, 2, 3 which are associated with the fraction decom-
position and given by

A1(θ) = ik1/[4ǫ cos θ(k1 − k2)(k1 − k3)]

A2(θ) = ik2/[4ǫ cos θ(k2 − k3)(k2 − k1)]

A3(θ) = ik3/[4ǫ cos θ(k3 − k1)(k3 − k2)]

(13)

The functions K(x, ξ, kn) = K(v − iw, κn + iµn) for n = 1, 2, 3 with (v,w) defined by (3) represent the
inner k-integrals associated with kn = κn + iµn written by :

K(Z, k) =

∫ ∞

0

et(v−iw)

t− (κ+ iµ)
dt = ekZE1(kZ) + iπ [sgn(µ)+sgn(µv − κw)]H(κ)ekZ (14)

in which Z = v − iw, and k = κ + iµ, E1(·) is the exponential-integral function defined by (eq.5.1.1) in
[4], sgn(·) the sign function and H(·) the Heaviside function. This special wavenumber-integral function
K(·) expressed analytically by (14) can then be evaluated accurately by using numerical algorithms for the
exponential-integral function. Furthermore, the integration of K(·) over a flat panel can be performed in
an analytical way.

Considering a flat panel hq of polygonal form with mq vertices with the coordinates Qj(ξj, ηj , ζj) for
j = 1, 2, · · · ,mq, and connectivities from Qj to Qj+1 with Qmq+1

= Q1 to close the contour, the normal
vector is denoted as n = (n1, n2, n3) according to the right-hand-thumb rule. The integration of the
wavenumber-integral function is written by

K(x, hq, k) =

∫∫

hq

K(Z, k) dS(ξ) = k−1

mq
∑

j=1

{

(k−1cj + dj)
[

K(k, Zj) + ln(−Zj)
]

+ cjR(Zj)
}

(15)

obtained in [5] by applying Stokes’ theorem to transform an integral on panel surface to contour integrals
along the panel’s sides. In (15), k = κ + iµ representing the complex wavenumbers kn for n = 1, 2, 3 and
the functions

R(Zj) = Zj ln(−Zj)− Zj

F 2Zj = z + ζj − i[(x− ξj) cos θ + (y − ηj) sin θ]
(16)

are used with the coefficients (cj , dj) defined by

F 2cj = (n2+in3 sin θ)
[

(ξj−ξj−1)δ
c
j−1−(ξj+1−ξj)δ

c
j

]

−(n1+in3 cos θ)
[

(ηj−ηj−1)δ
c
j−1−(ηj+1−ηj)δ

c
j

]

F 2dj = (n2+in3 sin θ)
[

(ξj−ξj−1)δ
d
j−1+(ξj+1−ξj)δ

d
j

]

−(n1+in3 cos θ)
[

(ηj−ηj−1)δ
d
j−1+(ηj+1−ηj)δ

d
j

] (17)

and (δcj , δ
d
j ) given by

δcj =

{

1/χj for |χj| > 0

0 for |χj| = 0
and δdj =

{

0 for |χj | > 0

1/2 for |χj | = 0

with F 2χj = ζj+1−ζj + i[(ξj+1−ξj) cos θ + (ηj+1−ηj) sin θ]

(18)

for j = 1, 2, · · · ,mq. It worth noting that the subscript sequence (·)0 = (·)mq
and (·)mq+1 = (·)1 in applying

(17). The coefficients (cj , dj) depend only on the geometry of panel hq. The functions K(k, Zj) has finite
values for Zj → 0. The same for auxiliary functions R(Zj) when Zj → 0. For large values of Zj , alternative
formulae are developed for C(x, k) well suit for its numerical evaluation. The integrations of the Green’s
function defined by (2) are then

GF (x, hq)=F 2

∫∫

hq

GF (x, ξ)dS(ξ)=
1

π

∫ π

−π

[

A1(θ)K(x, hq, k1)+A2(θ)K(x, hq, k2)+A3(θ)K(x, hq, k3)
]

dθ (19)

reduced to single θ-integrals which can be evaluated numerically. According to (18), the coefficients dj
defined in (17) is negligible except in the vicinity of two critical θ-values at which, wj = 0, the wavenumber
vector parallel to (cos θ, sin θ) is orthogonal to the direction in parallel to the segment Qj-to-Qj+1 of panel
hq when both Qj and Qj+1 are located at the same level (i.e. ζj = ζj+1). However, ignoring dj can lead to
significant numerical errors.
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Figure 2: Amplitude functions (13) on the left and the integrand function in (19) in the middle against cos θ, and
the integration of Green’s function (19) on the right along the straight line (x, 0, 0) over a vertical panel.

4 Discussion and conclusions

The complex amplitude functions A1,2,3 = AR
1,2,3 + iAI

1,2,3 defined by (13) associated with the complex
wavenumbers k1,2,3 the roots of the dispersion equation (7) are illustrated on the left of Figure 2 for
τ = 0.2 and ǫ = 10−4. The complex amplitude functions are smooth in the whole range of | cos θ| ≤ 1 even
in the vicinity of θ = π/2 as shown by the zoom box. Due to the fact that the minimum |∇D| = 5ǫ/4 for
τ = 1/4, the amplitude functions (A1, A2) are of finite for τ = 1/4 and τ > 1/4 at θ = θc in general.

A flat panel with 4 vertices Q1 = (−
√
3/4,−1/4, 0), Q2 = (−

√
3/4,−1/4,−1/2), Q3 = (

√
3/4, 1/4,−1/2)

and Q4 = (
√
3/4, 1/4, 0) is used as an example to integrate the wavenumber-integral function. The inte-

grand function in (19) is depicted for a field point x = (−3, 0, 0) and represented in the middle of Figure 2.
Three values of the viscous coefficient ǫ = 10−3, 10−4 and 10−6 are used. The oscillatory integrand func-
tion is manifestly different for different values of viscous coefficient. The θ-integral (19) of the oscillatory
integrand functions yields the value of integration of Green’s function GF (x, hq) on the flat panel, depicted
on the right of Figure 2. It is shown the result is not sensitive to the viscous coefficient, as expected.

The viscous effect is introduced through the analysis of real fluid flow based on the linearised Navier-
Stokes equation and Helmholtz decomposition in [2], and resultant Green’s function possesses many in-
teresting features. First, the dispersion equation becomes complex and has three complex wavenumbers
instead of two real roots if viscosity is nil. The short-length divergent waves are deformed and highly
damped due to the presence of viscosity. Second, at the critical frequency corresponding to τ = 1/4, the
Green’s function is of finite value and should provide results with a smooth transition crossing the critical
frequency. Third, the integrand function in the Fourier representation becomes smooth where it is sharp
variation or singular if viscosity is absent, and less oscillatory due to damping effect. Furthermore, the
analytical integration over flat panels including those on the free surface provides the accurate elements of
the boundary integral equations, which are few affected by the viscous coefficient used. Indeed, the recent
development based on new boundary integral equations involving the integration of Green’s function over
the free surface in the vicinity of ship hull, presented in [5] shows the excellent agreement of final results
(added-mass and damping coefficients) with measurements of model tests. This confirms the soundness of
Green’s function with viscosity and its beneficent features.
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