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1. Introduction 

Among the wide variety of nearshore and offshore artificial structures, some might be identified as floating porous 

elastic plates with small draught relative to their horizontal dimensions, e.g., floating flexible breakwaters, artificial 

floating vegetation fields and extensive aquaculture farms. Therefore, it is essential to study the flexural deformations of 

floating porous elastic plates subjected to water waves and to evaluate the wave dissipation caused by their porosity. 

Water-wave interaction with floating elastic plates has been widely studied, most of these plates were non-porous [1-5]. 

Less research work for porous elastic plates has been reported, except the investigation carried out by Meylan et al. 

(2017), Koley et al. (2018) and Zheng et al. (2020), which were focused on a single porous elastic plate [6-8]. For an 

array of such porous elastic plates, especially with the individual plates deployed close to each other, the hydrodynamic 

interaction between them can significantly influence their responses. In this paper, a theoretical model is developed based 

on linear potential flow theory and an eigenfunction matching method to investigate wave scattering by multiple circular 

floating porous elastic plates with three different types of edge conditions, i.e., free -, simply supported -, and clamped 

edges. Two methods for evaluating the exact power dissipated by the array of porous plates are proposed. 

2. Mathematical model 

Consider N circular porous elastic plates floating in water of finite depth h (see Fig.1, N=2 is taken as an example), N 

local cylindrical coordinates Onrnθnz are defined with their origins On located on the central vertical axis of the n-th plate. 

A Cartesian coordinate system Oxyz is applied to describe the wave scattering problem with z=0 at the mean water 

surface and Oz pointing upwards. Additionally, one more cylindrical coordinate system Or0θ0z is defined with its origin 

coinciding with the Cartesian coordinate system (not plotted in Fig. 1). The mean wetted surface of the n-th plate is 

denoted as Ωn. The radius of the n-th plate is denoted by Rn. β denotes the incident wave direction. Rjn and αjn are the 

norm and the angle of vector OjOn. The water domain is divided into two types, a) interior region, i.e., the region beneath 

each plate, and b) exterior region, i.e., the rest extending towards infinite distance horizontally. 

 

Fig. 1.  Definition sketch: (a) bird view; (b) top view. 

Within the framework of linear potential flow theory, the fluid flow in the water domain can be described by the 

velocity potential φ, which satisfies the Laplace equation, the boundary conditions at sea bed and the water surface of the 

exterior region, and the kinematic and dynamic conditions at Ωn (n=1, 2, .., N) [6] 
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where ω is the angular wave frequency; η(n) denotes the complex vertical displacement of the lower surface of the n-th 

plate; P is the porosity parameter; g is the gravitational acceleration; γ and χ denote the mass per unit area and the 



 

flexural rigidity of the plate, respectively, scaled with respect to the water density; P, χ, and γ can be non-dimensionalised 

with respect to the water depth as P =Ph,  =χ/h4 and  =γ/h. ∆ is the Laplacian operator in the horizontal plane. 

In different subdomains, the velocity potential φ can be expressed as follows: 

(1) Exterior domain  
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(2) Interior domain [6] 
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m lB  are the unknown coefficients to be solved; kl (l=0, 1, 2, …) and κl (l=-2, -1, 0, 1, 2, …) are the roots of the 

dispersion relations for the exterior- and interior domains, i.e.,  
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respectively, in which the second dispersion relation can be derived from Eq. (1); Jm and Hm denote the Bessel function 

and the Hankel function of the first kind, respectively. The pressure and velocity continuity conditions on the interfaces 

of each two adjacent regions, together with the free -, simply supported -, or clamped edge conditions are used to solve 

the unknown coefficients. 

The energy dissipated by the N plates due to porosity can be calculated by a straightforward method 
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An indirect method based on Kochin function provides an alternative way to evaluate Pdiss 
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where HR is the Kochin function 
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3. Results and discussions 

Montiel et al. (2013) carried out a series of wave basin experiments of a pair of elastic circular plates and observed 

strong hydrodynamic interaction between them [3]. Figure 2 illustrates the theoretical and experimental deflection of four 

markers on each plate. It is shown that the present conceptual model can be used to predict the response of the two elastic 

plates well, and it gives insights on how the two plates affect each other's response. 

 

Fig. 2.  Deflection of (a) marker 1 (rn=Rn, θn=0); (b) marker 2 (rn=0); (c) marker 3 (rn=Rn, θn=π) and (d) marker 4 (rn=Rn, 



θn= π/2) for the two-plates as a function of frequency. Each figure contains the present theoretical results and the 

experimental data [3] associated with both plates. [R1=R2=0.72 m, h=1.9 m, R12=x2-x1=3.0 m, y1=y2=0, β=π, P=0, 

 =3.55×10-4,  =2.79×10-3, free edge]. 

Wave power dissipation by two porous elastic plates are evaluated by using both the direct- and indirect methods, the 

results of which are illustrated in Fig. 3, where Pdiss is non-dimensionalised as ηdiss=kPdiss/Pin with k the wave number and 

Pin the incident wave power per unit width of the wave front. The excellent agreement of the results, as shown in Fig. 3, 

together with those plotted in Fig. 2 gives confidence in the present theoretical model for solving wave scattering and 

evaluating wave dissipation by an array of circular floating porous elastic plates. 

 

Fig. 3.  Wave power dissipation of two plates with different edge conditions evaluated by using direct method (lines) 

and indirect method (symbols): (a) variation of ηdiss with P  for β=π/6; (b) variation of ηdiss with β for P =1.0. 

[-x1/h=x2/h=3.0, y1=y2=0, R1/h=R2/h=2.0, h\ω2/g=2.0,  = =0.01]. 

Figure 4 presents how ηdiss vary with the incident wave direction β and also with the porosity parameter P  for a pair 

of plates deployed along the x-axis with a free floating edge, simply supported edge and clamped edge. For any specific 

wave incident direction, the optimal P  for the free floating case is the least among the three studied cases, and the 

optimal P  for the clamped example is the largest. Although ηdiss varies dramatically with the change of P  for P <0.5 

for all the three cases, it is not sensitive to P  when P >1.0, especially for the simply supported and clamped edge cases. 

For the pair of plates with a fixed porosity, the wave power dissipated by them is the smallest when incident waves 

propagate along the two plates, i.e., β=0. This minimal case results from the significant reduction of the wave power 

dissipated by the leeward plate due to the "shadowing effect" of the plate at the waveward side. The largest wave power 

dissipations in terms of ηdiss for the three-edge cases are 15.79, 12.24, and 11.63, occurring at ( P , β/π) = (1.05, 0.30), 

(1.35, 0.31), and (2.10, 0.32), respectively. 

Figure 5 illustrates the effect of P  and R1,2/h on ηdiss. In the computed range of P  and R1,2/h, there are two peaks of 

ηdiss observed, one occurring at R1,2/h = 5.0, and the other at R1,2/h = 8.0, in which the former one is higher than the aft 

one, regardless of the types of the plate edge. More specifically, the largest values of ηdiss are 16.49, 12.79, 12.38, for the 

free floating-, simply supported-, and clamped cases, occurring at ( P , R1,2/h) =(1.25, 5.0), (2.25, 5.0) and (3.00, 5.0), 

respectively, which are induced by the hydrodynamic interaction between the plates, or the so-called array effect. 

Figure 6 presents the variation of the wave power dissipation of an array of porous elastic plates in terms of ηdiss/N 

with P . For P <0.25, the curves of ηdiss/N with different values of N nearly overlap with each other, denoting the 

negligible impact of the plate number in the array on wave power dissipation. For the rest computed range of P , i.e., 

P >0.25, the ηdiss/N- P  curve rises with the increase of N. The most significant improvement of ηdiss/N occurs when N 

increases from 1 to 2. As N turns larger and larger, the increment of ηdiss/N gets weaker and weaker. These apply to all the 

edge conditions, i.e., free floating-, simply supported-, and clamped edges. Take the free floating edge case with P =1.0 

as an example, the ηdiss/N corresponding to N=1~5 are 7.40, 8.19, 8.45, 8.56 and 8.63, with the increasing percentage 

10.7%, 3.1%, 1.3% and 0.9%, respectively. It can also be observed that the more plates the array contains, the larger the 

value of P  is required to achieve the maximum wave power dissipation. 



 

 

Fig. 4.  Contour plot for the variation of ηdiss as a function of P  and β: (a) free floating edge; (b) simply supported 

edge; (c) clamped edge. [N=2, -x1/h=x2/h=3.0, y1=y2=0, R1/h= R2/h=2, hω2/g=2.0,  = =0.01]. 

 

 
Fig. 5.  Contour plot for the variation of ηdiss as a function of P  and R1,2: (a) free floating edge; (b) simply supported 

edge; (c) clamped edge. [N=2, -x1/h=x2/h=0.5R1,2/h, y1=y2=0, R1/h= R2/h=2.0, hω2/g=2.0, β=π/2,  = =0.01]. 

 

 
Fig. 6.  Variation of ηdiss/N with P  for different number of plates in the array, N: (a) free floating edge; (b) simply 

supported edge; (c) clamped edge. [(xj+1-xj)/h=5.0, yj=0, R1/h= R2/h=2.0, hω2/g=2.0, β=π/2,  = =0.01]. 
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