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1 Introduction
‘Moonpools’ are vertical openings, through the deck and hull of ships or offshore oil and gas exploration plat-
forms, designed for marine and offshore operations such as pipe laying, riser hang-off or diver recovery. As
being exposed to incident waves or harmonic ship motions, the fluid inside moonpool may perform significant
resonant motions. Since the large fluid motions inside moonpools can cause negative impacts, it is important to
predict the resonance frequencies and modal shapes of free-surface elevation at the design stage. The natural
modes in a moonpool consist of sloshing modes and piston mode, where the entrapped water heaves up and
down more or less like a solid.

Molin (2001) developed an ingenious method to solve the moonpool resonance problem, based on the
assumption that the water depth is infinite and the beam/length are very large. A series of formulations have
been derived to predict the natural frequencies. More recently, new models (Molin et al., 2018; Zhang et al.,
2019) have been developed to study three-dimensional and two-dimensional moonpool resonances in finite-depth
waters and demonstrate that the solutions can be improved significantly comparing to the previous models. In
the present study, we develop a model to predict the natural frequencies and modal shapes for three-dimensional
rectangular moonpools with recess in finite-depth waters. We examine the effects of recess on resonant wave
motion, including natural frequencies and modes.

2 Mathematical Formulation
We developed a new model to study the natural modes of a three-dimensional moonpool with recess. The sketch
of the problem is illustrated in Fig. 1. It is assumed that the flow inside the moonpool to be three-dimensional.
Based on domain-decomposition scheme, three subdomains are defined as illustrated in Fig. 1. The origin of
the coordinate system is placed at the left corner of the recess. The horizontal dimension of the moonpool is
L2 by B2. The moonpool height is d1 and the recess height is d2. The horizontal dimension of the recess is b1
by b2. The key assumption here is that velocity potential is nil at the outer boundaries (T1, T2, T3 and T4 as
denoted in the sketch). c is the clearance between the bottom of the supporting structure and the seabed.

The velocity potential in the subdomain 1 (inside moonpool) is taken as

ϕ1(x, y, z) = A00+B00
z − d2
d1

+

∞∑
m=0

∞∑
n=0

(m,n)6=(0,0)

[Amn cosh νmn(z − d2)

+Bmn sinh νmn(z − d2)] cosλm(x+ b1) cosµn(y + b2) (1)

with λm = mπ/L2, µn = nπ/B2, ν2mn = λ2m +µ2
n; m and n are integers. b1 = (L2−L3)/2 and b2 = (B2−B3)/2.
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Figure 1: Sketch of the problem and coordinate system. (a) and (b) are the two sideview.
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In the subdomain 2 which is inside the recess as shown in Fig. 1, the velocity potential is written as

ϕ2(x, y, z) = C00+D00
z

d2
+

∞∑
p=0

∞∑
q=0

(p,q)6=(0,0)

[Cpq cosh γpqz +Dpq sinh γpqz] cosαpx cosβqy (2)

with αp = pπ/L3, βq = qπ/B3, p and q are integers, and γ2pq = α2
p + β2

q .
In the subdomain 3 which is underneath the moonpool, the velocity potential is taken as

ϕ3(x, y, z) =

∞∑
i=1

∞∑
j=1

Eij
coshσij(z + c)

coshσijc
sinκi(x+ a1) sin τj(y + a2) (3)

with κi = iπ/L1, τj = jπ/B1, σ2
ij = κ2i + τ2j , i and j are the integers. a1 = (L1 − L3)/2, a2 = (B1 −B3)/2.

With these expansions the Laplace equation and the boundary conditions at the vertical boundaries are
fulfilled. It remains to match the velocity potential and velocity at the common boundaries. We apply Garrett’s
method (Garrett, 1971) in the following.

Matching of the potential and vertical velocity on z = d2
It must be ensured that

A00+

∞∑
m=0

∞∑
n=0

(m,n) 6=(0,0)

Amn cosλm(x+ b1) cosµn(y + b2)=C00 +D00

+

∞∑
p=0

∞∑
q=0

(p,q)6=(0,0)

(Cpq cosh γpqd2 +Dpq sinh γpqd2) cosαpx cosβqy (4)

Multiply both sides with cosαpx cosβqy and integrate with x and y over the moonpool, we get

C00 +D00 = A00 +

∞∑
m=0

∞∑
n=0

(m,n) 6=(0,0)

Amn

L3B3

∫ L3

0

cosλm(x+ b1) dx

∫ B3

0

cosµn(y + b2) dy (5)

and

Cpq +Dpq tanh γpqd2 =

∞∑
m=0

∞∑
n=0

(m,n)6=(0,0)

ξpqAmn

L3B3 cosh γpqd2

∫ L3

0

cosλm(x+ b1) cosαpxdx

∫ B3

0

cosµn(y + b2) cosβqy dy (6)

which can be written in matrix form as −→
C + DD

−→
D = MA

−→
A (7)

where DD the diagonal matrix and MA is a full matrix. If p or q = 0, then ξpq = 2, otherwise ξpq = 4.
In addition, the continuity condition of vertical velocity gives

∂ϕ1(x, y, z)

∂z
=

∂ϕ2(x, y, z)

∂z
, 0 ≤ x ≤ L3, 0 ≤ y ≤ B3, (8)

= 0 elsewhere. (9)

That is

B00

d1
+

∞∑
m=0

∞∑
n=0

(m,n)6=(0,0)

Bmnνmn cosλm(x+ b1) cosµn(y + b2) =

D00

d2
+

∞∑
p=0

∞∑
q=0

(p,q) 6=(0,0)

γpq (Dpq cosh γpqd2 + Cpq sinh γpqd2) cosαpx cosβqy. (10)

By a similar procedure, we can obtain the following vectorial form

−→
B = MBC

−→
C + MBD

−→
D (11)

Matching of the potential and vertical velocity on z = 0



It must be ensured that

C00+

∞∑
p=0

∞∑
q=0

(p,q) 6=(0,0)

Cpq cosαpx cosβqy =

∞∑
i=1

∞∑
j=1

Eij sinκi(x+ a1) sin τj(y + a2) (12)

Multiply each side with cosαpx cosβqy and integrate over the domain of validity, we obtain

−→
C = MCE

−→
E (13)

In order to match the vertical velocity, it must be ensured that

∞∑
i=1

∞∑
j=1

Eijσij tanhσijc sinκi(x+ a1) sin τj(y + a2) =
D00

d2
+

∞∑
p=0

∞∑
q=0

(p,q) 6=(0,0)

Dpqγpq cosαpxβqy (14)

By a similar procedure, we get −→
E = MED

−→
D (15)

By combing (13) and (15), it yields

−→
C = MCE ·MED

−→
D = MCD

−→
D (16)

By substituting (1) into the free-surface boundary condition, it gives

B00

d1
+

∞∑
m=0

∞∑
n=0

(m,n)6=(0,0)

νmn (Amn sinh νmnd1 +Bmn cosh νmnd1) =

ω2

g

A00 +B00 +

∞∑
m=0

∞∑
n=0

(m,n) 6=(0,0)

(Amn cosh νmnd1 +Bmn sinh νmnd1)

 (17)

which can be written in vectorial form as

D1
−→
A + D2

−→
B = ω2(

−→
A + D4

−→
B ) (18)

with

diagD1 = (0, gνmn tanh νmnd1) (19)

diagD2 = (g/d1, gνmn) (20)

diagD4 = (1, tanh νmnd1) (21)

By combing (7), (11), and (16), it yields

(D1 + D2 ·MBA)
−→
A = ω2(I + D4 ·MBA)

−→
A (22)

with
MBA = (MBC ·MCD + MBD)(MCD + DD)−1MA (23)

where I is the identity matrix. The solution of this eigenvalue problem in (22) yields the natural frequencies
and associated modal shapes of the free surface. In addition, following Molin (2017), we derived a frozen-mode
approximation (FMA) model for finite-depth waters by assuming the fluid inside the recess moves up and down
like a solid. The added-masses due to the fluid inside subdomain 1 and 3 are derived.

3 Results and Discussion
We study a floating foundation for wind turbine with a square moonpool, as described in Guignier et al. (2016),
but with recess. Here, the objective to examine the effect of recess on the natural modes of a three-dimensional
moonpool. We take the same dimensions of the floating foundation and moonpool as those in the initial design.
The dimension of the recess in the x and y directions are taken to be the same, which means L3 = B3.

The present results by solving the eigenvalue problem and adopting the developed frozen-mode approxima-
tion model are compared with solutions using a diffraction-radiation code (WAMIT, 2016). Fig. 2(a) illustrates
the variation of piston-mode frequency with respect to the horizontal dimension of the recess while the heigh
of recess is fixed. Fig. 2(b) illustrates the effect of recess height on the piston-mode frequency and also shows



the comparison with the prediction by frozen-mode approximation. It’s interesting to find that the results by
frozen-mode approximation model agree quite well with the solutions by WAMIT. In order to illustrate the
effect of recess on modal shapes of free surface, Fig. 3 present the modal shapes for moonpool w/o and with
recess. As shown, in contrast to the case without recess, the free surface above the recess is relatively higher
than that elsewhere. In particular, the free-surface elevations at the four corners reach the highest.

Finally, for the square moonpool with recess, we observe the modes (2, 0) + (0, 2) and (2, 0)− (0, 2), whose
natural frequencies do not come to the same frequency in case of a square recess, similar to that reported in
Molin et al. (2018). More detailed results will be reported during the workshop.
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Figure 2: Square moonpool. (a) The variation of piston-mode frequency with respect to the L3 (gap width
inside recess). The height of moonpool d1 = 3.5 m and height of recess is d2 = 3.5 m; (b) The variation of
piston-mode frequency with respect to the moonpool height d1. The dimension of moonpool are 27 m by 27 m.
Supporting structure is bounded by L1 = B1 = 51 m.

Figure 3: Modal shapes of free surface inside a square moonpool in piston-mode resonance. (a) without recess;
(b) with recess. L3 = B3 = 13 m. d1 = d2 = 3.5 m.
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