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1. Introduction

The ship turning in calm water reaches to a steady turning after time has elapsed, and the trajectory
becomes a circle. On the other hand, the turning circle in waves is deformed mainly due to the effect
of the wave-induced steady forces, and during the turning the ship drifts to a direction different from
the incident wave direction (Ueno, et al., 2003)(Yasukawa and Nakayama, 2009). This paper presents
a theoretical treatment with respect to the deformation of the turning circle in waves and the ship drift
motion during turning by extending the linear maneuvering motion theory by Nomoto et al. (1957).

2. A Theoretical Treatment of Ship Turning in Waves
2.1 Motion equations

In this theoretical analysis, the following assumptions apply:
e Rudder angle ¢, ship’s lateral velocity v, and ship’s yaw rate r are small.
e Surge-coupling effects on maneuvering are neglected. The ship speed U is given.
e Wave-induced steady lateral force Yy and yaw moment Ny acting on the ship are small.

Therefore, the motion equations of the ship is simplified to the equations with respect to sway and yaw.
In the framework of the ship-fixed coordinate system, the motion equations in the non-dimensional
form are expressed as

m + m;)i/ +(m +m)r =Y, (D
(I, + J )i =N, 2

where m is the ship’s mass, I ; is the moment of inertia for yaw, m, is the added mass for surge, m,
is the added mass for sway, J,; is the added moment of inertia for yaw, Y is the lateral force acting on
the ship, and N is the yaw moment around the center of gravity acting on the ship. These equations are
non-dimensionalized by using the water density p, ship length L, ship draft d, and ship speed U. The dot
notation denotes the ordinary differential with respect to non-dimensionalized time #'(= tU/L).

Y’ and N’ are expressed as

Y = YV Y+ Yo+ Y0 } 3)

N = NV + N’ + N6+ Ny, (xr)

Y}, Y., Nj, and Nj are linear hydrodynamic derivatives on maneuvering. Y; and N} are rudder force
coefficients. Yy, (y,) and Ny, (y,) are coefficients of the wave-induced steady lateral force and the yaw
moment in waves, respectively; are each functions of the relative wave direction y,(= y — ¢); and are
expressed as follows:

) Hf/3 2 Hf/3
Yo () = —=—=Cy(x,), Ny, =——C , 4
W(X}) Fyzl Id y(xr) W(X}) F,2, Id ~(xr) 4)

where F), is the Froude number based on L, and Hj /3 is the significant wave height. Cy and Cy are wave-
induced steady lateral force coefficient and wave-induced steady yaw moment coefficient, respectively.



v/, r/, and heading angle y are assumed to be expressed as follows:

V= vy 4V
r=ry+Ar (5)
Y =yo+4y

The subscript O implies the quantity in calm water; substituting 4 implies the change in quantity due to
the wave effect. ¢ is assumed to be O(1), and the other terms are assumed to be O(g), where ¢ is a small
quantity.

By substituting eq. (5) into eqs. (1) and (2) and linearizing the equations, we obtain two sets of
motion equations: one set gives the motion equations in calm water and the other set gives the equations
for motion change due to the wave effect. The motion equations in calm water coincide with the for-
mulas derived by Nomoto et al.(1957). The equations for the motion changes due to the wave effect are
expressed as

(' +m)AV" + (M +m)Ar" = Vi + Y41 + Yy, (x), (6)
(I, + J.)4F = NJAV + N.Ar" + Ny, (xr). (7)

For simplicity, the Taylor expansion is applied to Y7, (y,) at ¢ = i as follows:

4
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YyOor) = Yy(ro) +A¢W + ... = Yy (xo) + O(e%), ®)
where yo is defined as y — ¥o. Therefore, the following motion equations are obtained as
(m" +m)NAV + (m" + m)Ar" = YA + YA + Yy (xo), 9)
(I, + J )47 = NyAV + N.Ar" + Ny, (xo). (10)

If the heading angle in calm water ¥ is given, x( is known when y is given, and Y7, (xo) and N}, (xo) are
also known. By eliminating 4V’ in egs. (9) and (10), the following equation is obtained:

T{T5Ar + (T} + T)Ar' + 4r" = Fy,(xo), (11)
where
Fiyxo) = [N/¥},(x0) - YINy, (ro)] /C. (12)

The constants 7| and 77 are expressed using the linear derivatives (details are skipped here). Eliminating
Ar in egs. (9) and (10), the following equation is obtained:

T{T}A + (T} + T)AV + 4V = F,(xo), (13)
where
Fy(xo) = [N¥}(x0) = (¥, —m’ = m)Ny, (o) /C. (14)

Eq. (11) for 47" and eq. (13) for 4v" are base equations for the motion changes due to the wave effect.

2.2 Approximate solution of turning change due to wave effect

Next we will consider the solution of eq. (11), where the absolute wave direction y is assumed to be
zero. This means that the head wave is assumed at the time of approaching before steering is initiated.
In addition, for analytical treatment of the problem, F7, and F7, are assumed to be expressed using the
sine function, and considering the condition after time has elapsed, we can approximate as follows:

Fy(xo)
Fy(xo)

—Ay sin(ry 1), (15)
—Ay sin(ry 7). (16)



where r{ is the non-dimensional yaw rate during steady turning in calm water.
The motion equation (11) is then rewritten as

T{T547 + (T} + THAr + Ar' = —Ay sin(r§t’). (17)
Here the particular solution for 47’ is assumed to be
Ar’ = Aw3[re exp(irgt)], (18)

where J is obtained by taking the imaginary part of the complex number, and i is V—1. By substituting
eq. (18) into eq. (17), the following is obtained:
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Therefore, the solution is expressed as
Ar = AwCw sin(rgt’ + ew), (20)
where
Cw = L+ +Tpr2 =1, 1)
ew = tan! W] ~ tan”! [(T; + T;)r;.] . (22)
TTire =1

When eq. (20) is integrated by ¢’, the heading change due to the wave effect 4y can be expressed as

A
M = ==L cos(ry? + ew) + ¥, (23)
rS

where ¥, is an integration constant. Similarly, 4V is obtained as

AV = Aysin(ryt + ey). (24)

2.3 Deformation of turning circle in waves

In the space-fixed coordinate system, the equation for the ship position (x’, y') is expressed as

X = cosy —Vsiny
Yy = sinyg 4V cosy } 25)
Substituting eq. (5) into eq. (25) and linearizing the equation, the followings are obtained:
¥ = cosyp —vsingg + 4% 26)
Yy = singg +vjcosyg + 4y
where
A% = =4y + AV sin gy, (27)
4y = Ay +4AV)cos . (28)

(4x’, 4y") expresses the change in the ship’s position due to the wave effect.
Here, we consider the turning condition after time has elapsed. By substituting eqs. (23) and (24)
into egs. (27) and (28), the following are obtained:

A
Ax = - [AV sin(rgt’ + ew) — ,W cos(rgt’ + ew) + Y |sin(rg ), (29)
%
.7 . ’ AW 7 ’
A4y = |Aysin(rgt’ + ey) — ——cos(rgt’ + ew) + Y| cos(rgt). (30)
S
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When egs. (29) and (30) are integrated by #', the turning trajectory change due to the wave effect (4x’,
Ay") are obtained as

A Ay .
AxX = _W cos(ng, ! +ey)— t;_V,V sin ey + '7[/—,[ COS(F& ')
r"z 2r, ro
S S S
Ay . Ay
o sin2rgt’ + ew) — I’T Cos € + X{;, @3
%
Aw . A .
4y = ——v}; sin2rgt’ + ew) — ' VY cos €y + %0_,1 sin(rg ")
rS ZFS I’S
AV AV .
+4r, cos(2rgt’ + ew) + tl? sin ey + y;,. (32)
%

Egs. (31) and (32) are composed of three terms: a varying term with frequency 2r(, a varying term with
frequency r7,, and a term that is proportional to ¢’. Since the first two terms vary periodically with ¢, it
can been seen that the drift motion that occurs during the turning of ships in waves comes from the term
that is proportional to . The term that is proportional to # emerges from the time integration in terms
of sinz(ré ') and cosz(ré ) in eqs. (29) and (30). Initially, this comes from the interaction between the
ship’s heading in calm water and the heading change due to the wave effect (see eqgs. (27) and (28)).
Now, consider a condition in which the heading changes by 27 from a certain time ¢’ = ;. When 4¢’
is denoted as the time it takes, 4¢" is expressed as 27/r. The coordinates of the trajectory change due
to waves at ¢’ = 1) are represented by (Ax;)o, 4 y;O), and the coordinates of the trajectory change after the
heading changes by 2r are represented by (Ax;;zﬂ, A}’;,zn)- Consequently, the distance between the two
coordinates (drifting distance) 161 and the inclination (drifting direction) 6y, are calculated as follows:

2 2 A n|Aw|
- - 2 2.2 o
I, = \/ (A =X o)+ (4 = A) = 2 VA2, + A2 = o (33)
5
aAx, —Ax —Ay sin ey — Ayr,, cos €
O = tan~! M = tan”! W i Y ‘S, - M~ €w. (34)
Ayp27r - Aypo —Aw cos ey + Ayrg sin ey
[, and 6 are determined independently of time. [, is proportional to the square of the turning radius

in calm water and is proportional to Ay. Therefore, as shown in eq. (4), [j;, is proportional to Hf ; and
is inversely proportional to F2. fy; coincides with ey as defined in eq. (22).

3. Conclusion

Extending the linear theory of ship maneuvering motions by Nomoto et al.(1957), a formula representing
the deformation of the ship turning trajectory due to waves and formulae for calculating the drifting
distance and the drifting direction due to waves were derived. These specific calculation examples will
be presented at the workshop and compared with the tank test results.
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