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Introduction 

The research on the interaction of flexural-gravity waves with structures has received much attention in the past. Both the 
linear and nonlinear problems are of concern. The linear solutions to this problem have been developed using different 
analytic methods in both 2D and 3D formulations [1-5]. In the case of large-amplitude waves, the second-order solutions 
have also been proposed by BEM technique for a vertical circular cylinder surrounded by an infinite ice sheet [6, 7] and 
a flexible floating body with finite length [8, 9]. 
In the present work, the second order diffraction of a flexural-gravity wave by a vertical wall for finite water depth is 
investigated by the classical eigenfunction expansion method. A singularity of the second order incident potential has 
been discovered at a special wave frequency, where the wave speeds at this frequency and at the double frequency are 
equal. Vanden-Broeck and Parau [10] suggested a method to remove this singularity from strong nonlinear waves by 
adding a wave component at the double frequency. However, how to remove the singularity from the second order solution 
by regular perturbation analysis is still a problem. 
 

Fundamental equation 

As shown in Figure 1, the problem of the flexural-gravity 
waves propagating in a water of finite depth is considered first. 
A two-dimensional Cartesian coordinate system is used where 
the x-axis is horizontal and the z-axis is directed vertically 
upward. The upper surface of the fluid −∞ < 𝑥 < +∞, 𝑧 =
0  is covered by a thin infinite elastic plate with a small 
thickness d, a Young's modulus E, a Poisson's ratio 𝜐, and a 
density 𝜌௦ . The rigid sea bed is flat, z h   . The fluid is 
incompressible, inviscid, and the motion is irrotational. The 
nonlinearity of the problem comes from the Bernoulli 
equation for the hydrodynamic pressure and the kinematic 
condition on the elastic plate/water interface. The elastic 
deflections are linear and governed by the Euler-Bernoulli plate equation in this study. 
 
In the frequency domain, the dimensional velocity potential is expanded into a perturbation series, 
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As the mean term (2)

m  does not contribute to the wave force up to the second order, the stress will only be given on the 

oscillatory parts of the velocity potential, ( ) ( , ) ( 1,2)j x z j  . ( ) ( , )j x z  satisfy Laplace’s equation in the unperturbed 

fluid domain, 
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the sea-bed condition 
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where  is the density of water and g is the acceleration due to gravity, s Sm d  is density of the plate per unit area, 

 
Figure 1: Flexural-gravity wave propagates in  

water of finite depth covered by infinite elastic plate 



 

 

 3 2/ 12 1I d   , and the forcing term reads 
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Regular perturbation solution to the second order    

The first order solution 

For a propagating wave with an amplitude A, 

 1i(1) k xAe   , (6) 

the first order flexural-gravity velocity potential reads 
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where 1k  is the wave number which satisfies the dispersion relation with the wave frequency  , 
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The second order solution 

Substituting the first order potential (7) into Eq. (5), the second order forcing term on the upper surface of the fluid can 
be written as  
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The second-order propagation potential can be derived as follow by the Laplace equation and the boundary conditions: 
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where 12i(2) /k xC F e D , and the denominator D is 
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The singularity of the second order propagation potential 

To show the character of the second order flexural-gravity velocity potential, we plotted out the variations of the 
coefficient C and denominator D with the wave frequency in Figs. 2 and 3, in which the model characteristic parameters 
are selected as follow: density of water 31025 /kg m   , density of plate 3925 /s kg m   , acceleration of gravity 

29.81 /g m s  , water depth 30h m  . The stiffness of the plate EI is selected as 71 10  , 85 10   and 101 10 Nm  , 

respectively. For comparison, the ones of the gravity wave, or those with the free surface condition ( 0)sEI   , are 

also plotted and indicted as FS in the figures. It can be seen that for the cases with an elastic plate on the upper surface, 
there is a singularity for each case at the frequency corresponding to the zero of the denominator D. For the case with the 
free surface condition, there is no singularity in the whole frequency range as the denominator D does not have zero 
except at 0  . 
From further analysis it is found that the occurrence of D=0 is due to the reason that 2k , the wave number corresponding 

to the double wave frequency 
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is equal to 12k , twice of the wave number corresponding to the wave frequency. At this frequency, the speed of the locked 

second order wave 1 1 12 / 2 = /c k k   is equal to the speed of the free wave at the double frequency 2 22 /c k

1= / k . Fig. 4 shows the variation of the ratio of wave numbers 1 22 /k k  with the wave frequency. It is seen that for the 

cases with different elastic plates on the top of the water the ratios 1 22 /k k  are unit at zero frequency, and then decreases 

with the increase of wave frequency. After reaching its minimum, they begin to increase and cross the unit line. However, 



 

 

for the free surface condition, the ratio 1 22 /k k  decreases monotonically with increase of the wave frequency and does 

not cross the unit line. 
Fig. 5 shows the variation of the wave speed c  with the wave frequency. For the cases with elastic plates on the top of 
the water the wave speed decreases with the increase of wave frequency firstly, and begins to increase after reaching its 
minimum. There is a possibility that (2 ) ( )c c   at some value of the wave frequency. 
 

 
Figure 2: Variation of coefficient C with frequency 

 
Figure 3: Variation of denominator D with frequency 

 

 
Figure 4: Variation of ratio 1 22 /k k with frequency 

 
Figure 5: Variation of wave speed with frequency 

Removing the singularity in the nonlinear flexural-gravity 

Vanden-Broeck and Parau [10] studied the singularity problem in a moving coordinate system with the wave, and 
expanded the wave profile, potential function and wave speed into perturbation series to the third order by the singular 
perturbation method 
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For the infinite water depth situation, the singularity in the second order potential is removed by taking the first order 
flexural-gravity wave as: 

 (1)
1 1=A cos / 2 cos 2kx A kx  .                                       (14) 

They demonstrated that the solution is non-uniqueness. 

Reflection of second order flexural-gravity wave from a vertical wall  

To demonstrate the influence of the singularity in the second potential by regular perturbation method, a second 
order model is applied to the reflection of flexural-gravity waves from a vertical wall, as shown in Figure 6, with a second 
order incident wave. In the present numerical calculations, the clamped conditions ( 0, 0)x at x    is applied at the 

contact of the elastic plate and the wall. The parameters of the problem are the same as above except the stiffness of the 
plate is 8

5 10EI Nm   . The distribution of the module of the first order potential at the frequency 1.0 /rad s    is 

shown in Figure 7. The second order force (2)
xF on the vertical wall is divided into two terms, the term due to the quadratic 

product of the first velocity 
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and the term due to the second order potential 
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Figures 8 and 9 show that 2xF is much greater than 1xF . The component 2xF  tends to infinity when the wave frequency 

approaches the special value where 1 22 =k k . This is a problem for the second order analysis of the interaction of flexural-

gravity with structures. 

 
Figure 6: The interaction between flexural-gravity waves 
and a vertical wall with the clamped conditions. 

 
Figure 7: Module of the first order potential near the wall 

  

 
Figure 8: The force term 1xF  on the vertical wall 

 
Figure 9: The force term 2xF  on the vertical wall 
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