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1 Introduction

The velocity potential of a transient source of arbitrary strength and in arbitrary two-dimensional
motion is derived, wherein a thin elastic plate of infinite extent is assumed to cover the surface of
water. This potential is fundamental in the analysis of flexural-gravity waves (FGW) generation by
various types of motion of a submerged body. As a simple application, the potential of a point dipole
is considered; this models the unsteady horizontal motion of a circular cylinder perpendicular to its
axis. Das et al. (2018) investigated the propagation of FGW including the effect of compression and
current. The purpose of this work is to study the properties of FGW arising from the superposition
of the translating and oscillating dipole motion.

2 Mathematical formulation

Consider a fixed rectangular coordinate system Oxy, where the x-axis coincides with the unperturbed
upper boundary of water, and positive direction of the y-axis is upward. A water of the constant
density ρ and uniform depth H is assumed to be incompressible and inviscid, and its motion is
assumed to be potential. The upper boundary of water is covered with a thin elastic plate. This
model is used to analyze floating ice sheets and very large floating structures (e.g., platforms). It is
assumed that the water motion occurs in the result of the action of a point mass source of a variable
intensity; the source turns on at the time t = 0. The source position at t ≥ 0 is determined by its
trajectory ξ = (ξ(t), η(t)) and the intensity µ(t), where −H < η(t) < 0 and µ(t) = 0 for t < 0. There
exists a velocity potential Φ(x, y, t) which satisfies the Poisson equation:

∆Φ = µ(t)δ(x − ξ(t)), (|x| < ∞, −H ≤ y ≤ 0). (1)

Here ∆ denotes the two-dimensional Laplace operator in the (x, y)-plane, x = (x, y), and δ is the
Dirac delta-function.

Then we assume that the lower boundary of the elastic plate is always in a contact with the
water. Denoting by w(x, t) the elastic plate deflection, the linearized kinematic and dynamic boundary
conditions are given by (see, e.g., Kheysin (1967)):

∂w/∂t = ∂Φ/∂y, D∂4w/∂x4 + Q∂2w/∂x2 + M∂2w/∂t2 + ρ∂Φ/∂t + ρgw = 0 (y = 0), (2)

where D = Eh3
1/[12(1 − ν2)], M = ρ1h1; E, ν, ρ1, h1 are the Young modulus, the Poisson ratio,

the density and thickness of the elastic plate; Q is the longitudinal stress (Q > 0 corresponds to
compression, and Q < 0 to stretching); g is the acceleration due to gravity. The bottom is assumed
non-permeable, so that

∂Φ/∂y = 0 (y = −H). (3)

It is assumed that far from the source water is calm and the velocity field tends to zero for all t > 0:

lim
r→∞

∇Φ = 0 (t ≥ 0), r = |x − ξ(t)|. (4)

The initial conditions at y = 0 and all x are:

Φ = w = ∂w/∂t = 0 (t = 0). (5)



To solve the initial-boundary problem (1)–(5), we use the Laplace and Fourier transforms:

Φ̂(k, y, s) =

∫

∞

0
e−st

∫

∞

−∞

Φ(x, y, t)e−ikxdxdt (6)

with Re s > 0 and real k.
Our main interest in this problem is the determination of the elastic plate deflection w(x, t). The

Laplace and Fourier transforms of function w(x, t) can be found from the formula ŵ(k, s) = Φ̂′(k, 0, s)/s
which follows from the first of Eqs. (2). Using then Eqs. (1)–(6) to determine Φ′(k, 0, s), we ultimately
find:

ŵ =
ρs

B(k)[s2 + ω2(k)] cosh(kH)

∫

∞

0
µ(t)e−st−ikξ(t) cosh[k(H + η(t))]dt,

where B(k) = ρ + kM tanh(kH), and the dispersion relation for the linear FGW is:

ω(k) =

√

k(Dk4 − Qk2 + ρg)

ρ coth(kH) + kM
. (7))

The plate deformation in the real (x, t)-space can be obtained by means of the inverse Fourier and
Laplace transforms of Φ̂(k, y, s), and the final formula for the function w(x, t) is:

w(x, t) =
ρ

π

∫

∞

0

dk

B(k) cosh(kH)

∫ t

0
µ(τ) cos[k(x − ξ(τ))] cos[ω(k)(t − τ)] cosh[k(H + η(τ))]dτ.

The simplest example of a submerged body that can be modeled by point sources in the two-
dimensional case is a circular cylinder. The motion of such a cylinder is simulated by a dipole with
the moment M(t) = M0U(t), where M0 = 2πR2, U = (U1, U2) = dξ(t)/dt, x = ξ(t) is the trajectory
of the cylinder center, and R is its radius.

Solution for vertical displacement of the elastic plate caused by the motion of a dipole has the
form:

w(x, t) =
ρM0

π

∫

∞

0

kdk

B(k) cosh kH

∫ t

0

{

U1(τ) sin [k(x − ξ(τ))] cosh [k(H + η(τ))]+

U2(τ) cos [k(x − ξ(τ))] sinh [k(H + η(τ))]
}

cos [ω(k)(t − τ)] dτ. (8)

Further, we restrict ourselves by consideration the dipole moving only in the horizontal direction
at a fixed depth h and set U2(t) = 0, η(t) = −h.

3 Horizontally moving and oscillating dipole

Assume that a dipole instantly accelerates from zero to a constant speed U0 and periodically oscillates
with the constant amplitude γ and frequency Ω, so that its trajectory has the form:

ξ(t) = U0t + γ sinΩt, U1(t) = U0 + γΩcos Ωt.

In the moving coordinate frame X = U0t − x, solution (8) can be written as:

w(X, t) =
ρM0

π

∫

∞

0

k cosh [k(H − h)]

B(k) cosh kH

∫ t

0
(U0 + γΩcos Ωτ)×

sin{[k(U0(t − τ) − X − γ sinΩτ ]} cos [ω(k)(t − τ)] dτ dk.

For small amplitude oscillations of the dipole this formula can be further linearized with respect
to γ and presented in the form:

w(X, t) = w0(X, t) + γ [Wc(X, t) cos Ωt + Ws(X, t) sin Ωt] , (9)

where function w0(X, t) describes purely horizontally motion of dipole with a constant speed U0

without oscillation:

w0(X, t) =
ρM0U0

2π

∫

∞

0

k cosh [k(H − h)]

B(k) cosh kH
[Ic(k) cos kX − Is(k) sin kX] dk.



Here the following notations were introduced:

Ic(k) =

2
∑

n=1

1 − cos [(U0k + (−1)nω(k))t]

U0k + (−1)nω(k)
, Is(k) =

2
∑

n=1

sin [(U0k + (−1)nω(k))t]

U0k + (−1)nω(k)
,

and functions Wc(X, t) and Ws(X, t) are defined by the formulae:

(Wc, Ws) =
ρM0Ω

π

∫

∞

0

k cosh [k(H − h)]

B(k) cosh kH

∫ t

0
(cos Ωp, sinΩp) sin [k(U0p − X)] cos [ω(k)p] dp dk. (10)

Solution (9) allows us to determine the vertical deflection of elastic plate at any time.
To study the behavior of functions Wc and Ws in the far-field zone when |X|, t → ∞, we use the

method of stationary phase which allows us to estimate asymptotically the double integrals (10). The
phase functions in these integrals are:

Ψ1,2(k, p) = k(U0p − X) ± p[Ω + ω(k)], Ψ3,4(k, p) = k(U0p − X) ± p[Ω − ω(k)]. (11)

The stationary points are solutions of the following set of simultaneous equations:

∂Ψi/∂k = 0 → dω/dk = ± (U0 − X/p) , ∂Ψi/∂p = 0 → ω/k = ±Ω/k ± U0.

As well-known, the dispersion relation (7) for FGW imposes a restriction on the maximal value of
a compression force. The stability of oscillations of a floating ice plate is guaranteed by the condition
Q < Q∗ ≡ 2

√
gρD, whereas at Q > Q∗ the ice plate shatters (see, e.g., Kheisin (1967), Bukatov (2017),

Das et al. (2018)). There is one more critical value of the parameter Q such that for Q < Q0 < Q∗, the
group velocity of FGW cg = dω/dk is positive for all wavenumbers k ≥ 0. Such a case when cg > 0 will
be dubbed the normal dispersion in contrast to the case of anomalous dispersion when Q0 < Q < Q∗.
The latter case is characterized by the presence of a wavenumber interval within which the group
velocity is negative. Both these critical values Q∗ and Q0, as well as the corresponding wavenumbers
k∗ and k0 can be determined from the joint solution of two simultaneous equations cg(k) = 0 and
dcg/dk = 0.

To determine the stationary points of functions Ψi(k, p) (i = 1, ..., 4) in (11), we restrict ourselves
by consideration an infinitely deep fluid, because in this case, the determination of stationary points
reduces to the finding of the roots of polynomials, whereas in the case of a fluid of finite depths, it is
necessary to solve transcendental equations.

Further we introduce the following dimensionless parameters:

D̄ = D/(gρR4), M̄ = M/(ρR), Q̄ = Q/(gρR2), F = U0/
√

gR, (σ, ω̄) = (Ω, ω)
√

R/g, k̄ = kR.

The dispersion relation (7) in the deep-water limit in the dimensionless variables is:

ω̄(k̄) =
√

k̄
(

D̄k̄4 − Q̄k̄2 + 1
)

/(1 + k̄M̄).

The analysis of the stationary points behavior in the case of normal dispersion was performed by
Sturova (2013). It was shown that function Ψ1 in Eq. (11) does not have stationary points. The

function Ψ2 has no more then two stationary points, which we denote as k
(1)
2 and k

(2)
2 . Function Ψ3

has at most three stationary points k
(1)
3 , k

(2)
3 , k

(3)
3 . Function Ψ4 always has only one stationary point

k
(1)
4 . The only difference in the case of anomalous dispersion, (Q0 < Q < Q∗), is that function Ψ4 has

at most three stationary points k
(1)
4 , k

(2)
4 , k

(3)
4 . Therefore, in the case of normal dispersion, the total

number of stationary points does not exceed six, whereas in the case of anomalous dispersion, it does
not exceed eight.

The directions of wave propagation which are determined by the stationary points of functions Ψ2

and Ψ3 depend on the sign of the expression F − c̄g(k), and for function Ψ4 the direction depends
on the sign of the expression F + c̄g(k). In all these expressions one need to plug the wavenumbers
of stationary points corresponding to each function instead of k. Waves with the positive value of



expressions F ± c̄g(k) propagate downstream (X > 0), whereas waves with the negative value of this
expressions propagate upstream (X < 0).

Fig. 1 shows the partition of the parameter plane (σ, F ) into several domains depending on the
number of generated waves. The following input data were used: E = 5 · 109 Pa, ν = 0.3, ρ1 =
922.5 kg/m3, h1 = 1 m, ρ = 1025 kg/m3, R = 5 m, g = 9.81 m/s2. For these data set we have
Q̃0 ≡ Q0/

√
gρD = 1.475.

Figure 1. The parameter plane partition depending on the number of generated waves for the normal dispersion,

Q̃ = 1.2, (a) and anomalous dispersion (b), Q̃ = 1.95.

The case of normal dispersion (Q̃ ≡ Q/
√

gρD = 1.2) is shown in Fig. 1(a). For the parameters

σ and F from the domain G1 (marked by vertical hatching), there are four stationary points k
(1)
2 ,

k
(2)
2 , k

(1)
3 , k

(1)
4 , two of which (k

(1)
2 , k

(1)
4 ) cause wave perturbations running downstream, and the other

two (k
(2)
2 , k

(1)
3 ) – running upstream. For the domain G2 (marked by the combination of horizontal

and vertical hatching) there are six stationary points three of which (k
(1)
2 , k

(2)
3 , k

(1)
4 ) cause wave

perturbations running downstream, and the other three (k
(2)
2 , k

(1)
3 , k

(3)
3 ) – running upstream. For the

domain G3 (marked by horizontal hatching) there are four stationary points two of which (k
(2)
3 , k

(1)
4 )

cause wave perturbations running downstream, and the other two (k
(1)
3 , k

(3)
3 ) – running upstream.

For the domain G4 (no shaded domain) there are only two stationary points, one of which k
(1)
4 causes

wave perturbation propagating downstream, and another one, k
(1)
3 , – running upstream.

The case of anomalous dispersion with Q̃ = 1.95 is shown in Fig. 1(b). In addition to the listed
domains G1, . . . , G4, the domains G5 and G6 appear in this case. In the domain G5 (shown by oblique

hatching) there are four stationary points two of which (k
(1)
4 , k

(3)
4 ) cause wave perturbations running

downstream, and the other two (k
(1)
3 , k

(2)
4 ) – running upstream. For the domain G6 (shown by com-

bined horizontal and oblique hatching) there are six stationary points, three of which (k
(2)
3 , k

(1)
4 , k

(3)
4 )

cause wave perturbations running downstream, and the other three (k
(1)
3 , k

(3)
3 , k

(2)
4 ) – running up-

stream.
More detailed analysis of theoretical and numerical results will be presented at the Workshop.
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