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HIGHLIGHTS 

 Effects of free surface nonlinearity on the fluid resonance within a narrow gap are quantified. 
 The nonlinear Duffing oscillator feature, namely, the soften/harden spring dynamics, is demonstrated, and is resulted 

from the second order effect with a rise of the mean water level. 
 Due to the quadratic and cubic nonlinearity, super-harmonic resonance and combined harmonic resonance are 

obtained. 
 Nonlinear hydrodynamics, such as co-exiting periodic motions (Period 2 motion, Period 3 motion) and higher order 

harmonic components, are studied. 

1 INTRODUCTION 

Fluid resonance in a narrow gap, or gap resonance, has received extensive attentions on account of extremely large 
response amplitudes in the gap may be excited for two vessels with side-by-side arrangement (Molin, 2001; Kristiansen 
and Faltinsen, 2008; Lu et. al, 2010, 2011; Feng and Bai, 2015). Previous studies have shown that the wave response 
amplitudes around the resonant frequencies (ωR) are generally over-predicted by the linear potential flow theory, due to 
the damping effect (Kristiansen and Faltinsen, 2008; Lu et. al, 2010) or the nonlinearity (Kristiansen and Faltinsen, 2008; 
Feng and Bai, 2015). Based on the relatively smaller wave steepness or forced amplitudes, both Kristiansen and Faltinsen 
(2008) and Feng and Bai (2015) concluded that the nonlinearity effect was insignificant in suppressing resonance 
responses. However, effects of nonlinearity on the responses around the primary resonant frequency were not quantified. 
Apart from the primary resonance around the first-order resonant frequency, a secondary resonance, i.e. the second order 
resonance, has been observed by Li (2019) as well. The second order resonance describes a local extreme response 
amplitude when the forcing frequency is close to half of resonant frequency ωR/2, which results from second-order 
harmonic components. Hence, it can be speculated that the nonlinearity plays a major role in the response at around half 
of the primary resonant frequencies. 

In the present paper, the wave-induced fluid resonance in a narrow gap between two barges is investigated. Firstly, 
effects of the free surface nonlinearity on the fluid resonance within a narrow gap are quantified based on previous 
experimental and present numerical results. Then the nonlinear Duffing oscillator feature, namely, the soften/harden 
spring dynamics, is demonstrated for various incident wave amplitudes. A further investigation confirms that the nonlinear 
Duffing behavior results from the second order effect with a rise of the mean water level. Considering a nonlinear 
oscillator with quadratic or cubic nonlinearity, the secondary resonance is investigated within a wide range of incident 
wave frequency ω∈[0.29ωR, 1.48ωR]. Finally, the nonlinear hydrodynamics, such as co-exiting periodic motions, are 
discussed based on phase portraits and amplitude spectrums. 

2 NUMERICAL MODELS 

The schematic diagram of the present numerical wave flume is demonstrated in Fig. 1. The origin of a Cartesian 
coordinate system O-xy is at the mean water free surface with the positive x-axis in the propagation direction of the 
incident wave and the positive y-axis being vertically upwards. As shown in Fig. 1, two boxes are firmly fixed in the 
numerical wave flume. With respect to the incoming wave direction, Barge 1 is the leading barge, and has a breadth B1 
and a draft d1. The breadth and draft of Barge 2 are defined as B2, and d2, respectively. The narrow gap between Barge 1 
and Barge 2 has a width Bg. Six wave gauges are employed to record the wave surface elevation. Hereafter, the wave 
surface elevation measured by wave gauge Gp is labelled by ηp (p = 1, 2, 3, 4, 5 and 6) and the corresponding wave height 
and wave amplitude are denoted by Hp and Ap, respectively. 
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FIGURE 1. Schematic diagram of the numerical wave flume and the definition of the coordinate system. 

To investigate the effect of the free surface nonlinearity on the wave-induced fluid response within a narrow gap, a 
fully nonlinear time domain model and a linear time domain model are developed. Both two numerical wave models are 
established based on potential flow theory. The finite element method (FEM) is employed to discretize the whole fluid 
domain. At the beginning of the simulation, a ramp function is applied to prevent the impulse-like solution and to reduce 
the transient waves. A relaxation zone method developed by Jacobsen, Fuhrman and Fredsøe (2012) is employed to 
eliminate the wave reflection. To generate the designed incident waves, the theoretical velocity potential is specified at 
the inlet boundary, where the Airy wave is adopted in the linear model and fifth-order Stokes wave (Fenton,1985) is given 
in the fully nonlinear model. In order to satisfy the fully nonlinear boundary conditions at the instantaneous free surface 
in the fully nonlinear model, moving grid method in Arbitrary-Lagrangian-Eulerian Frame (Donea, Giuliani, and Halleux, 
1982) is adopted here to track the free surface at each time step. Moreover, a Chebyshev 5-point smoothing scheme is 
employed in the fully nonlinear model to eliminate the saw-tooth numerical instabilities. 

3 RESULTS AND DISCUSSIONS 

Effects of the free surface nonlinearity in the fluid resonant response are firstly qualified based on the previous 
experimental results (Liu et al., 2016) and the present numerical results. The setup of numerical simulations is in 
accordance with that of the experiment, which is such that B1 = 0.20m, B2 = 1.00m, d1 = d2 = 0.25m and Bg = 0.05m. the 
water depth h is set as 0.50m and the incident wave height H is set as 0.03m. The range of the incident wave frequency 
ω is kept within [3.14rad/s, 7.85rad/s]. Variations of the non-dimensional average wave response height H1/H with respect 
to the non-dimension incident wave frequency ω/(g/h)0.50 are demonstrated in Fig. 2 for the present and previous studies, 
where H1 is the wave response height. The computation around the resonant frequency ωR in the fully nonlinear flow 
model is collapsed because of overly distorted meshes induced by the extremely large amplitude of the response in gap. 
A noticeable feature of the results is that non-dimensional fully nonlinear response amplitude H1/H is relatively smaller 
than that of the linear potential result when the incident wave frequency ω approaches the resonant frequency ωR, which 
is induced by transfer of energy to higher modes owing to nonlinearities. Moreover, due to the nonlinear effect, an inclined 
trend in the distribution of H1/H is observed around the resonant frequency in the fully nonlinear potential results, as 
denoted by the blue arrow line. While for the linear result, the distribution of H1/H demonstrates a vertical trend as the 
incident wave frequency approaches the resonant frequency, as denoted by the black arrow line. Fig. 3 displays the 
amplitude difference values Δl-f between the linear response and the fully nonlinear response, as well as the amplitude 
difference values Δl-e between the linear result and the experimental result around the resonant frequency. The percentage 
Θ = Δl-f /Δl-e is defined to quantify the nonlinear effect, which means the nonlinear effects in suppressing the difference 
values between linear response and experimental response. From this figure, it can be seen that the value of Θ can reach 
55% around the resonant frequency, which indicates that the free surface nonlinearity is of more significance than the 
damping effect in suppressing the difference between the linear response and the experimental one. 

  
FIGURE 2. Variations of non-dimension wave response 
amplitude H1/H with respect to non-dimensional incident 
wave frequency ω/(g/h)0.50, black arrow line↑and blue 
arrow line↗denote the trend of linear and fully nonlinear 
responses around the resonant frequency, respectively. 

FIGURE 3. Quantification of free surface nonlinear 
effects on the fluid resonant response around the resonant 
frequency.  

Wave-induced fluid oscillations in a single gap under different incident wave amplitudes are further examined to 
illustrate the effect of free surface nonlinearity on the nonlinear hydrodynamics. Hereafter, numerical setups are such that 
B1 = B2 = 0.50m, d1 = d2 = 0.25m, Bg = 0.05m, h = 0.50m, and four different incident wave amplitudes H = 0.01m, 0.02m, 
0.03m and 0.04m. Both linear and fully nonlinear simulations are conducted in the time domain. Fig. 4 represents the 
amplitude-frequency responses for different incident wave amplitudes. All responses present a forward sweep, which is 
a typical feature of the nonlinear Duffing oscillator, namely, the harden spring dynamics. With the increase of the incident 
wave amplitude, the primary resonant frequency ωR shifts towards the high frequency. Based on the harmonic analysis, 
the nonlinear Duffing behavior is found to result from the second order effect with a rise of the mean water level. 
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FIGURE 4. Variations of non-dimension wave response amplitudes H1/H with respect to non-dimensional incident wave 
frequency ω/(g/h)0.50 under different incident wave amplitudes. 

The nonlinear harden spring dynamics indicates the existence of the stiffness nonlinearity and moreover reflects the 
possibility of the secondary resonance. Therefore, a further simulation is carried out within a broader range of incident 
wave frequency ω∈[0.29ωR, 1.48ωR] at a constant wave height H = 0.04m. Results of both nonlinear and linear 
amplitude-frequency responses are presented in Fig. 5, where the response height H1 is obtained by averaging the 
difference values between maximum and minimum in each period during 20 steady periods, as shown in the inset diagram 
of Fig. 5. The linear response presents a single peak in the response amplitude at ω = ωR = 5.32rad/s, whereas the nonlinear 
response demonstrates two more local peaks at ω = ωR/2 and ω = ωR/3, noted as A and B, respectively. Hence, except the 
primary resonance at ω = ωR = 5.32rad/s, super-harmonic resonance, a secondary resonance, is observed in the wave-
induced fluid oscillations within a narrow gap. Next, combined harmonic resonance is investigated by introducing bi-
chromatic incident waves with ωI = ωR/4, ωII = 3ωR/4, HI = 0.04m and HII = 0.04m. The time history of response and the 
corresponding amplitude spectrums at two different time intervals are shown in Fig. 6. It can be seen that response 
amplitude grows with respect to time. The amplitude spectrums indicate that the increase of the response at the sum-
frequency, i.e. ωI + ωII = ωR, leads to the increase in the total response amplitudes, namely, the combined harmonic 
resonance. A further analysis shows that both the super-harmonic resonance and combined harmonic resonance are mainly 
attributed to the quadratic and cubic stiffness nonlinearities, which results from the second order effect with a rise of the 
mean water level.  

 
FIGURE 5. Variations of non-dimension wave response amplitude H1/H with respect to non-dimensional incident wave 
frequency ω/ωR. The inset figure illustrates the definition of the average response height H1. 

   
(a) (b) 

FIGURE 6. (a) Times histories of wave response in the single gap induced by bi-chromatic waves with ωI = ωR/4 and 
ωII = 3ωR/4. (b) Corresponding amplitude spectrums for two different time intervals. 

The nonlinear behaviors of the above three extreme points are further examined for ω = 0.99ωR, ω = ωR/2, and ω = 
ωR/3, in terms of the time history of the wave response, the amplitude spectrum and the phase portrait on the plane (dη/dt, 
η). Results are presented in Fig. 7. Firstly, differences in the time series of the wave response between the linear and the 
nonlinear response indicate that the free surface nonlinearity affects not only the response amplitude, but also the wave 
form, as two wave crests at ωR/2 and three wave crests at ωR/3 within a period have been observed. Hence, the higher 
order harmonics are motivated and determine the response amplitude. Secondly, the amplitude spectrum shows that the 
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second order response amplitude at ωR/2 is motivated and is higher than the first order response amplitude. At ωR/3, the 
third order response amplitude is motivated and the value is approximately equal to the first order response amplitude. 
Finally, the phase portrait indicates that the period 2 and period 3 motions exist in the response at ω = ωR/2 and ωR/3, 
respectively. 

  

  

  
(a) (b) (c) 

FIGURE 7. Time histories of the wave response in the gap, corresponding amplitude spectrums and phase portraits on 
the plane (dη/dt, η) for incident wave frequencies ω = 0.99ωR, ω = ωR/2, and ω = ωR/3. The blue dot ● represents the 
extra higher order components in the fully nonlinear results compared with the linear response. 

4 CONCLUSIONS 

Effects of free surface nonlinearity on the fluid resonant response within a narrow gap between two barges are 
quantified. Results show that the nonlinearity is of more significance than the damping effect in suppressing the difference 
between the linear response and the experimental response around the resonant frequency. Harmonic analysis shows that 
the second order effect with a rise of the mean water level leads to the quadratic and cubic stiffness nonlinearity, which 
results in the nonlinear Duffing oscillator feature with harden spring dynamics, the existence of super-harmonic resonance 
and combined harmonic resonance, and the co-exiting periodic motions (Period 2 motion and Period 3 motion) in the 
fully nonlinear response. 
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