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1 Introduction
The advection equation is a differential equation that governs the motion of a conserved scalar field as it is

advected by a known velocity vector field. It has high relevance in solution of problems related to water waves
and their interaction with fixed and floating structures. When the seakeeping problem with forward speed effects
is considered in a reference frame moving with the ship speed, advective terms appear in both kinematic and
dynamic free surface conditions [1] [2]. The advection terms are also an important part of the Navier-Stokes
equations, representing great numerical challenges in terms of both accuracy and stability for flows dominated by
advection. There exist many numerical methods that can be used to solve the advection equation in the time
domain. Examples are the one-stage explict and implict Euler methods, as well as multi-stage methods which can
be built from the one-stage methods.

Explicit methods are normally easy to implement and cheaper to solve within one time step for a given spatial
discretization. However, they normally require small time steps to achieve stable solution if possible. The stability
of the explicit methods is strongly affected by the numerical scheme for the spatial discretization. It can be shown
by a von Neumann stability analysis that, if a scheme based on forward in time and central difference in spatial
derivatives is used in solving a periodic problem, the solution is unconditionally unstable. Therefore, upwind finite
difference schemes are often applied to stabilize the solution, and the Courant–Friedrichs–Lewy (CFL) number
must be smaller enough.

We present a new class of explicit scheme which is derived from an approximation of the implicit Euler scheme.
This scheme does not involve solving matrix equations that are required by a standard implicit Euler scheme.
Unlike the standard explicit Euler scheme, which is unconditionally unstable for central difference schemes in
spatial descretization, the proposed scheme is conditionally stable for any types of differential operators in the
advection terms. The linear stability analysis results and two examples of the application of the new explicit
schemes will also be shown.

2 An explicit approximation of the implicit Euler method
Taking the following one-dimensional advection equation as example

∂φ

∂t
+ u

∂φ

∂x
= 0, (1)

and applying the standard implicit Euler method, one can formally write the discretization of Eq. 1 as

~φn+1 − ~φn

∆t
+ uDx

~φn+1 = 0, i = 1, ..., N, (2)

where the advection term is discretized using the solution at current time step, i.e. ~φn+1. In a standard one-stage
explicit method, the advection term will be approximated using solutions at previous time step i.e. ~φn. N is
the total number of grid points. Dx is the operator for the spatial differentiation ∂

∂x , based on standard finite
difference schemes or any other velocity reconstruction methods using stencil points around the grid points of
interest.

It should be noted that Dx is dependent on the size of meshes, thus we can introduce characteristic mesh size
∆sc at each grid point and rewrite Eq. 2 as

~φn+1 + rD̃x
~φn+1 = ~φn, i = 1, ..., N, (3)

where we have defined

r =
u∆t

∆sc
, (4)

and
D̃x = ∆scDx. (5)

Here r is proposional to the CFL number. The scaled operator D̃x has less dependence on grid size than the un-
scaled operator Dx. Taking a uniform grid and applying the popular 2nd order central difference as an example,
the i-th component of Eq.3 becomes

rφn+1
i+1 + φn+1

i − rφn+1
i−1 = φni , (6)



where r = u∆t/2∆x. ∆x is the grid size. The subscript and superscript indicate the index of grid point and time
step number, respectively.

After considering proper boundary conditions at two ends of the domain, we can formally set up a matrix
equation for the solution at n-th time step and the boundary conditions.

(I + rD̃x)~φn+1 = ~φn. (7)

Here I is identity matrix. A = I + rD̃x is a sparse matrix whose bandwidth is equal to the size of local stencil
points.

The standard way of solving Eq.7 is to solve the sparse-matrix equation iteratively, which may be computa-
tionally costly as the matrix on the left-hand side is not diagonal-dominiant. If we consider r as a small parameter,
e.g. r � 1, we can approximate the inverse of A = I + rD̃x by series expansion in r

A−1 = I +

∞∑
k=1

(
rkCk

)
(8)

Here the matrix Ck with k = 1, ...,∞ are independent on r. To determine Ck, we take the product of A and
A−1:

AA−1 =
[
I + rD̃x

](
I +

∞∑
k=1

rkCk

)
≡ I (9)

Eq.9 can be further re-arranged by collecting the terms with the same order in r as

r1
(
D̃x + C1

)
+ r2

(
D̃xC1 + C2

)
+ · · ·+ rk

(
D̃xCk−1 + Ck

)
+ · · · = 0 (10)

Requiring each term in the Eq.10 to vanish leads a simple solution for Ck:

Ck = (−1)kD̃k
x, k = 1, · · · ,∞ (11)

Therefore, A−1 in Eq.8 can be approximated in explicit form as

A−1 = I +

Np∑
k=1

(−r)kD̃k
x +O(rNp+1), (12)

where the we have truncated the infinite series summation to Np terms.
To this end, we can approximate the implicit Euler scheme as

~φn+1 − ~φn

∆t
=

Np−1∑
k=0

(−1)k+1(∆t)k (uDx)
k+1

 ~φn +O(∆t), (13)

which is an explicit scheme and conditionally stable as we will show later in the stability analysis.
When Np = 1, the scheme in Eq.13 becomes exactly the same as explicit Euler method. When Np > 1 is

considered in the truncated summation, the additional terms will provide stability of the scheme even for central
difference schemes. Extension to higher-order schemes and other properties of the scheme and its generalization
will also be presented at the workshop.
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Figure 1: Results of linear stability analysis for the new explicit scheme for different CFL numbers. Results are
based on 2nd order central difference for Dx. Np is the total number of terms in the series expansion in Eq.13

.



3 Linear stability analysis
By taking 2nd order central difference as an exmaple for the calculation of D̃x, we have carried out the linear

stability analysis for the scheme in Eq.13. A method of lines approach [3] which allows for separate consideration
of the time integration scheme and the spatial discretization is applied. Fig.1 shows the linear stability analysis
results for the new explicit scheme derived from the approximated implicit Euler method. Results are shown for
CFL = 0.25, 0.5 and 1.0, as well as different number of terms Np in the exansion in Eq. 13. For small CFL
numbers, the eigvenvalues of the Jacobian matrix are less dependent on Np, while they tend to be different for
larger CFL numbers. It indicates that the importance of the higher order terms in the expansion increases for
increasing CFL number.

4 Applications in hydrodynamics
The method presented above is being applied in a weakly-nonlinear seakeeping solver based on perturbation

scheme and a Navier-Stokes equation solver. For the seakeeping problem, we will present the wave diffraction
problem of a vertical circular cylinder under forced low-frequency surge motion in regular waves. This problem has
relevance for moored marine structures under large low-frequency motions in the horizontal plane. For simplicity,
we take a cylinder with a draft equal to the water depth.

The problem is formulated in a non-inertial body-fixed coordinate system , and the boundary value problem
is solved by a time-domain higher-order boundary element method [1] [4]. For a k-th order problem (k=1, 2), the
dynamic and kinematic free surface conditions take the following form(

∂

∂t
−
(
~W 0 −∇φ0

))
φ(k) = −gη(k) + f

(k)
1 on z = 0, k = 1, 2, (14)

(
∂

∂t
−
(
~W 0 −∇φ0

))
η(k) =

∂φ

∂z

(k)

+ f
(k)
2 on z = 0, k = 1, 2. (15)

The −
(
~W 0 −∇φ0

)
term, which is due to the steady or slowly-varying velocity of the structure, can be considered

as advection velocity. The superscript k stands for the order of the hydrodynamic problem. f
(k)
1 and f

(k)
2

are the forcing terms which are considered as known. A 2nd order time-integration scheme developed from an
approximation of the implicit Crank-Nicolson method is applied for the time-stepping of the free surface conditions.
In Fig.2, the 1st and 2nd order components of diffraction force on the vertical circular cylinder undergoing a slowly-
varying surge oscillation are presented. A regular incident wave with wave kR=1.0 is considered, with R as the
cylinder radius and k as the wave number. The slowly-varying surge velocity of the cylinder is U1 = Ua cos(0.1ωt),
where ω is the incident wave frequency. Ua is the surge velocity amplitude we have used Ua/

√
gR = 0.16 in the

analysis. Large influence of slowly-varying motions on the 2nd order wave loads is seen, while their effects on the
1st order wave loads are relatively smaller.
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Figure 2: Non-dimensional 1st order and 2nd order diffraction forces on vertical circular cylinder under forced
low-frequency oscillations. Left: 1st order. Right: 2nd order.

.As the second example, we will present our our attempt to apply the new time-integration scheme in solving
the 2D Navier-Stokes equations. The following 4-step projection method is applied:

~u∗ − ~un

∆t
+ (~un · ∇)~u∗ = 0 (16)

~u∗∗ − ~un

∆t
+ ν∇2~u∗∗ = 0 (17)

∇2p∗∗ =
ρ

∆t
∇ · ~u∗∗ (18)

~un+1 − ~u∗∗

∆t
=
∇p∗∗

ρ
. (19)

In order to test the accuracy and stability of our explicit scheme for advection equation, we have decided to
solve the diffusion equation by an implicit Euler scheme, thus the stability of the solution will be dominated by
the advection step. A ’frozen nonlinearity’ approach has been used for the advection terms, i.e. the advection



velocity will be approximated by the previous time step. Alternatively, one can use, for instance, a Adams-
Bathforth predictor to estimate the advection velocity from previous steps. The advection step is then solved by
the developed explicit scheme which is an approximation of the implicit Euler method. All spatial derivatives of
velocities and pressure are calculated by the 2nd order central difference. The steady Kovasznay flow is considered
here to test the stability of the scheme. The exact solution for the velocity and pressure fields is given by

u = 1− eλxcos(2πy), v =
λ

2π
eλxsin(2πy), p =

1

2

(
1− e2λx

)
, (20)

where λ = Re/2−
√
Re2/4 + 4π2. Re is the Reynolds number.

Fig.3 shows the computed streamlines for the flow field over a [-0.5, 1.0] × [-0.5, 0.5] computational domain,
which is descretized by a 80 x 60 uniform grid. The stability of the new explicit scheme approximated from the
standard implicit Euler scheme is compared with the explicit Euler scheme in Fig.4 for Re = 500. Time series of
L2 norm if the calculated horizontal velocity are presented for both standard explicit Euler method and the new
explicit method. Different curves represent results for different time-step sizes. It is seen from the comparison that
much larger time steps can be used in the new time-integration method. More results for even higher Reynolds
number will be presented at the workshop.

Figure 3: Stream line of the steady Kovasznay flow in a [-0.5, 1.0] × [-0.5, 0.5] computational domain
.

Figure 4: Time series of the x-component velocity L2 norm with different step size using different schemes for the
advection step. Different curves represent result for different time step. Left: standard Euler scheme; Right: the
new explicit scheme approximated from implicit Euler scheme
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