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1 Introduction
Wave interaction with shallowly submerged structures where the wave amplitude is of the same order of magnitude as the
submergence is often a difficult problem to model numerically due to wave breaking, the formation of bores and other non-
linearities. Linear hydrodynamic models perform poorly due to these effects. This work aims to develop a time domain
hybrid numerical model for the forced heave of a shallowly submerged vertical axis cylinder, using linear potential flow in
the region around the cylinder, matched to the non-linear shallow water equations for the region above the cylinder. This
work is motivated by the Carnegie Clean Energy CETO wave energy device, a thin vertical axis cylinder ≈25m in diameter
which sits 2-3m submerged below the free surface. For surface-piercing devices, parametric studies with linear hydrodynamic
models are a key tool; for shallowly submerged devices linear theory may be inadequate due to the effects described above. It
is of interest to create computationally efficient models using simplified non-linear equations, that may predict the bulk flow
properties adequately for parametric design studies.

Previous work by the authors examined the performance of a hybrid potential flow - shallow water equations model for
diffraction by a shallowly submerged step in 2D (McCauley et al., 2019). This model showed promise when comparing to
simulations conducted in CFD. The matching scheme used in this model followed from Grue (1992), who matched potential
flow to the Boussinesq equations in the shallow water region. The matching utilised an analytical form for a time-dependent
source term at the boundary, the strength of which depends on the flow rate at the edge of the step. This matching method
does not extend well to the 3D problem where a simple analytical form is not readily available, hence a new matching method
has been used in the current work, where the surface elevation at the boundary in the potential flow domain is calculated using
an impulse response function based on a pre-computed frequency domain solution to the exterior problem. Comparison of the
hybrid model to experimental data will be shown.

2 Hybrid model matching scheme

Figure 1: Definition sketch.

Figure 1 defines the cylindrical coordinate system (r, θ, z). The fluid is divided into
three regions, the core regions above and below the cylinder and an exterior region.
The radius of the cylinder is a, the water depth h, the distance from the free surface
to the top of the cylinder s and the clearance between the seafloor and the bottom of
the cylinder is c. The flow in the exterior and lower core regions is modelled using the
potential flow eigenfunction expansion method, following Siddorn & Eatock Taylor
(2008), while the flow in the shallow water region is modelled using the non-linear
shallow water equations, implemented using the finite volume method. In the linear
exterior domain we decompose the potential into a component due to the heave oscil-
lations of a surface piercing cylinder and a component due to the flow at the boundary
between the exterior and top core region. Since the flow in the top core region is as-
sumed to be shallow, i.e. ks � 1 (where k is the wavenumber), we approximate the
flow at the boundary by a radially oscillating solid boundary, or “piston”, where the
velocity normal to the piston surface at r = a is constant over −s ≤ z ≤ 0. Figure 2
shows the solution decomposition in the exterior region, where the total surface ele-
vation at the boundary, ηE , is composed of ηSP due to the oscillating surface piercing
cylinder and ηPE due to the oscillating solid piston boundary.

Figure 2: Solution decomposition in exterior region.



The general time marching scheme at the matching boundary for this forced motion problem is as follows:

1. The total surface elevation ηE is calculated at the current time step using ηPE from the previous step (zero in the first
time step) and ηSP evaluated at the current time. This is used to force the shallow water solver.

2. The velocity at the top core boundary from the shallow water solver is used to calculate the surface elevation ηPE using
the piston model impulse response function.

3. Steps 1 and 2 are repeated until the final time is reached.

3 Potential flow model
The potential flow model used for the surface piercing cylinder oscillating in heave follows Siddorn & Eatock Taylor (2008)
and will not be described in full here. The angle invariant potential for each Fourier mode f is denoted χf and t is the time.
The piston cylinder model uses the same method, modified by the additional boundary condition at r = a, −s < z < 0 and
with zero normal velocity on the cylinder surface in the lower core region. The velocity potential in the exterior region is:

χE
f (r, z) =

∞∑
m=0

Zm(z)Afm
Pfm(kmr)

Pfm(kma)
. (1)

The functions Pfm are defined as

Pfm(kmr) =

{
H

(2)
f (k0r) m = 0

Kf (ikmr) m = 1, 2, ... ,
(2)

where H(2)
f = Jf − iYf and Kf are Bessel functions in the standard notation. The remaining boundary condition on the

cylinder surface can be satisfied by choice of coefficients Afm. The exterior region velocity potential depth dependence is
described by the function Zm(z):

Zm(z) = (NE
m)−1/2 cosh(km(z + h)). (3)

The “piston” surface is assumed to extend vertically from z = −s to the free surface at r = a. The radial velocity of the
piston is assumed to be constant for all θ, the boundary condition on the piston surface is:
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= ur. (4)

The velocity potentials in the exterior and lower core are matched by integrating over the depth as in Siddorn & Eatock Taylor
(2008) equation (18), giving the condition:

αfn =

∞∑
m=0

AfmCnm, (5)

where Cnm are coupling coefficients and αfn are the lower core potential coefficients, see Siddorn & Eatock Taylor (2008).
On the piston surface, we use boundary condition (4) to define coefficients Dm:
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Including the integrals over −h ≤ z ≤ −s, see McCauley et al. (2018) equation (21), gives the key equation:

∞∑
n=0

αfnSfnCnm + urDm = Afm

P ′fm(kma)

Pfm(kma)
, (7)

coefficients Sfn are defined in Siddorn & Eatock Taylor (2008). Equations (5) and (7) may be written as matrix equations and
solved for the coefficients Afm and αfn (for the external and lower core regions, respectively). This completes the oscillating
piston solution.



4 Surface elevation impulse response functions
The complex amplitude of the surface elevation at r = a for a single heaving surface piercing cylinder is given by:

η̂SP = − iω
g

∞∑
m=0

Zm(0)A0m. (8)

Noting that the exterior potential coefficients are given by A0m = Dmu we can write

η̂SP = − iω
g

∞∑
m=0

Zm(0)Dmu. (9)

Only considering heave motion we take u = ûh[0, 0, 1, 0, 0, 0]
T where ûh is the complex heave velocity. Then we may write

η̂SP = H(ω)ûh, where we have defined the frequency transfer function H(ω) = − iω
g

∑∞
m=0 Zm(0)Dm[0, 0, 1, 0, 0, 0]T .

Assuming that the impulse response function (IRF), h(t), is real and causal, then H(ω) is Hermitian implying the real part is
an even function and the imaginary part is an odd function. It follows that the IRF, which is the inverse Fourier transform of
the transfer function, can be written as:

h(t) =
1

2π

∫ ∞
−∞

H(ω)eiωtdω =
2

π

∫ ∞
0

Re{H(ω)}cos(ωt)dω. (10)

Thus only the real part of the transfer function is required in computation of the IRF. The real part approaches zero for high
frequency faster than the imaginary part, reducing numerical error due to truncating the above integral at a cut off frequency.
The time domain surface elevation at the cylinder edge can then be calculated by the convolution integral of the IRF with the
time series of body heave velocity:

ηSP (t) =

∫ t

−∞
uh(τ)h(t− τ)dτ. (11)

In practice the convolution integral above is approximated using the Prony method. The piston surface elevation impulse
response function is calculated in a similar way, however it requires special attention as neither the real or imaginary parts of
the transfer function for surface elevation at the piston edge approach zero quickly at high frequency. An infinite frequency
approximation for this transfer function has been derived, which allows a closed form integral of the approximate transfer
function to be used above a high frequency cut-off in evaluation of (10).

5 Shallow water equations
The shallow water equations are used to model the flow in the top core region. As we are considering only heave motion the
problem is axi-symmetric and we may use the shallow water equations for cylindrical symmetry, given by Toro (2001) p246
equation (13.6). These are solved using a MUSCL Hancock scheme, HLL Riemann solver and splitting scheme for the source
terms. The shallow water solver has been verified for small amplitude cases using the solution of Lamb (1993) (see p275) for
canals of varying cross section.

6 Results
The hybrid model is compared to experimental data from a testing campaign at the COAST laboratory, University of Ply-
mouth, UK in 2018. In the basin tests motions of a submerged buoyant cylinder were imposed using a taut 3-cable arrange-
ment. Forces in the cables and surface elevation at r = 0 were measured. Sinusoidal cable motions were imposed, but due
to the cable geometry the resulting heave motion profiles differed slightly from sinusoidal. These tests were undertaken by
UWA in collaboration with Carnegie Clean Energy. The experimental data is compared to the hybrid model as well as a linear
potential flow model for a submerged cylinder as described in McCauley et al. (2018). For the linear model, impulse response
functions for the surface elevation and force are used to generate the time domain result given input heave body motion from
the experiments.

Figure 3 shows the surface elevation at the centre of the cylinder (top row), surface elevation in the exterior field at r/a = 3.1
(second row), cylinder heave displacement denoted by ζ (third row) and heave hydrodynamic force (fourth row). In this test
case ka = 0.35 and A/s = 0.33 where A is the heave amplitude. The vertical magenta line indicates the expected arrival time
of reflections (first harmonic) from the tank side-walls. The surface elevation in the exterior field has been low pass filtered
with the cut off at six times the fundamental frequency. It can be seen that the hybrid model performs significantly better than
the linear model in predicting the surface elevation and (particularly) the force in this case. Higher harmonics in the force



do not appear to be captured well, but the agreement is very good otherwise. Figure 4 shows the same plots at ka = 0.42,
A/s = 0.34. The hybrid model performs well at lower frequencies, however above ka = 0.6 the hybrid model performs
rather poorly when comparing the hydrodynamic force to experiments. Further results at other frequencies and amplitudes
will be shown at the workshop.

Figure 3: Surface elevation at the cylinder centre and at r/a = 3.1, heave displacement and vertical hydrodynamic force. ka = 0.35,
A/s = 0.33, s/a = 0.16, h/a = 2.4, T/a = 0.4.

Figure 4: Surface elevation at the cylinder centre and at r/a = 3.1, heave displacement and vertical hydrodynamic force. ka = 0.42,
A/s = 0.34, s/a = 0.16, h/a = 2.4, T/a = 0.4.
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